Tue, 10 Jun 2025
13:00
L1

A new construction of c=1 Virasoro blocks

Andy Neitzke
(Yale)
Abstract

I will describe a new method for constructing conformal blocks for the Virasoro vertex algebra with central charge c=1, by "nonabelianization", relating them to conformal blocks for the Heisenberg algebra on a branched double cover. The construction is joint work with Qianyu Hao. Special cases give rise to formulas for tau-functions and solutions of integrable systems of PDE, such as Painleve I and its higher analogues. The talk will be reasonably self-contained (in particular I will explain what a conformal block is).

New large value estimates for Dirichlet polynomials
Guth, L Maynard, J Annals of Mathematics
Planar chemical reaction systems with algebraic and non-algebraic limit cycles
Craciun, G Erban, R Journal of Mathematical Biology volume 90 issue 6 (22 May 2025)
Tue, 13 May 2025
15:30
L4

Parametrising complete intersections

Jakub Wiaterek
(Oxford)
Abstract

We use Non-Reductive GIT to construct compactifications of Hilbert schemes of complete intersections. We then study ample line bundles on these compactifications in order to construct moduli spaces of complete intersections for certain degree types.

Tue, 10 Jun 2025
15:30
L4

Cohomological Donaldson—Thomas invariants for 3-manifolds

Pavel Safronov
(Edinburgh University)
Abstract
Cohomological Donaldson—Thomas theory associates cohomology groups to various moduli spaces in algebraic geometry, such as the moduli space of coherent sheaves on a Calabi—Yau 3-fold. In this talk I will explain some recent results on cohomological DT invariants in the setting of a real 3-manifold $M$. In terms of string theory it corresponds to counting D3 branes in the compactification of a type IIB string theory on $T^* M$. This setting of DT theory is particularly interesting due to its connections to topology (via skein modules), geometric representation theory (geometric Langlands program), and mathematical physics (analytic continuation of Chern—Simons theory). This talk is based on papers joint with Gunningham, Kinjo, Naef, and Park.



 

On p -refined Friedberg–Jacquet integrals and the classical symplectic locus in the GL 2 n eigenvariety
Barrera Salazar, D Graham, A Williams, C Research in Number Theory volume 11 issue 2 (25 Apr 2025)
Tue, 29 Apr 2025
15:30
L4

On the birational geometry of algebraically integrable foliations

Paolo Cascini
(Imperial College London)
Abstract

I will review recent progress on extending the Minimal Model Program to algebraically integrable foliations, focusing on applications such as the canonical bundle formula and recent results toward the boundedness of Fano foliations.

Local character expansions and asymptotic cones over finite fields
Ciubotaru, D Okada, E Proceedings of the London Mathematical Society volume 130 issue 5 (13 May 2025)
Banner for event

In this Oxford Mathematics Public Lecture Gábor Domokos uses the geometric theory of tilings to describe natural patterns ranging from nanoscale to planetary scale, appearing in physics, biology, and geology and will introduce a new class of shapes called soft cells, which appear in both living and non-living nature.

Thu, 19 Jun 2025

12:00 - 12:30
L4

Optimal random sampling for approximation with non-orthogonal bases

Astrid Herremans
(KU Leuven)
Abstract
Recent developments in optimal random sampling for least squares approximations have led to the identification of a (near-)optimal sampling distribution. This distribution can easily be evaluated given an orthonormal basis for the approximation space. However, many computational problems in science and engineering naturally yield building blocks that enable accurate approximation but do not form an orthonormal basis. In the first part of the talk, we will explore how numerical rounding errors affect the approximation error and the optimal sampling distribution when approximating with non-orthogonal bases. In the second part, we will demonstrate how this distribution can be computed without the need to orthogonalize the basis. This is joint work with Daan Huybrechs and Ben Adcock.
Subscribe to