Tue, 12 Oct 2021

15:30 - 16:30
L5

The Mirror Clemens-Schmid Sequence

Alan Thompson
(Loughborough)
Abstract

I will present a four-term exact sequence relating the cohomology of a fibration to the cohomology of an open set obtained by removing the preimage of a general linear section of the base. This exact sequence respects three filtrations, the Hodge, weight, and perverse Leray filtrations, so that it is an exact sequence of mixed 
Hodge structures on the graded pieces of the perverse Leray filtration. I claim that this sequence should be thought of as a mirror to the Clemens-Schmid sequence describing the structure of a degeneration and formulate a "mirror P=W" conjecture relating the filtrations on each side. Finally, I will present evidence for this conjecture coming from the K3 surface setting. This is joint work with Charles F. Doran.

Mon, 16 Nov 2015
14:15
L6

Painlev'e equations, cluster algebras and quantisation

Marta Mazzocco
(Loughborough)
Abstract

The famous Greek astronomer Ptolemy created his well-known table of chords in order to aid his astronomical observations. This table was based on the renowned relation between the four sides and the two diagonals of a quadrilateral whose vertices lie on a common circle.

In 2002, the mathematicians Fomin and Zelevinsky generalised this relation to introduce a new structure called cluster algebra. This is a set of clusters, each cluster made of n numbers called cluster variables. All clusters are obtained from some initial cluster by a sequence of transformations called mutations. Cluster algebras appear in a variety of topics, including total positivity, number theory, Teichm\”uller theory and computer graphics. A quantisation procedure for cluster algebras was proposed by Berenstein and Zelevinsky in 2005.

After introducing the basics about cluster algebras, in this talk we will link cluster algebras to the theory of Painlevé equations. This link will provide the foundations to introduce a new class of cluster algebras of geometric type. We will show that the quantisation of these new cluster algebras provide a geometric setting for the Berenstein–Zelevinsky construction.  

Tue, 29 May 2012

15:45 - 16:45
L3

Fano 3-folds in codimension 4

Gavin Brown
(Loughborough)
Abstract

I show how to construct some Fano 3-folds that have the same Hilbert series but different Betti numbers, and so lie on different components of the Hilbert scheme. I would like to show where these fit in to a speculative (indeed fantastical) geography of Fano 3-folds, and how the projection methods I use may apply to other questions in the geography.

Thu, 04 Jun 2009

16:30 - 17:30
DH 1st floor SR

Scattering waves in elastic waveguides

Karima Khusnutdinova
(Loughborough)
Abstract

Layered (or laminated) structures are increasingly used in modern industry (e.g., in microelectronics and aerospace engineering). Integrity of such structures is mainly determined by the quality of their interfaces: poor adhesion or delamination can lead to a catastrophic failure of the whole structure. Can nonlinear waves help us to detect such defects? We study the dynamics of a nonlinear longitudinal bulk strain wave in a split, layered elastic bar, made of nonlinearly hyperelastic Murnaghan material. We consider a symmetric two-layered bar and assume that there is perfect interface for x 0, where the x-axis is directed along the bar. Using matched asymptotic multiple-scales expansions and the integrability theory of the KdV equation by the Inverse Scattering Transform, we examine scattering of solitary waves and show that the defect causes generation of more than one secondary solitary waves from a single incident soliton and, thus, can be used to detect the defect. The theory is supported by experimental results. Experiments have been performed in the Ioffe Institute in St. Petersburg (Russia), using holographic interferometry and laser induced generation of an incident compression solitary wave in two- and three-layered polymethylmethacrylate (PMMA) bars, bonded using ethyl cyanoacrylate-based (CA) adhesive.

Subscribe to Loughborough