Thu, 26 Apr 2018

16:00 - 17:30
L3

Tubing issues: Moving a sphere in a narrow pipe & Baromorphs

José Bico
(ESPCI)
Abstract

Tubing issues: 

- Moving a sphere in a narrow pipe

What is the force required to move an object inside a narrow elastic pipe? The constriction by the tube induces a normal force on the sphere. In the case of solid friction, the pulling force may  be simply deduced from Coulomb’s law. How does is such force modified by the addition of a lubricant? This coupled problem between elasticity and viscous flow results in a non-linear dependence of the force with the traction speed.

[[{"fid":"51328","view_mode":"media_portrait_small","fields":{"format":"media_portrait_small","field_file_image_alt_text[und][0][value]":"","field_file_image_title_text[und][0][value]":""},"type":"media","attributes":{"height":"300","width":"258","class":"media-element file-media-portrait-small"}}]]

- Baromorphs

When a bicycle tyre is inflated the cross section of the pipe increases much more than its circumference. Can we use this effect to induce non-isotropic growth in a plate?  We developed, through standard casting techniques, flat plates imbedded with a network of channels of controlled geometry. How are such plates deformed as pressure is applied to this network? Using a simplified mechanical model, 3D complex shapes can be programmed and dynamically actuated. 

[[{"fid":"51329","view_mode":"media_portrait_small","fields":{"format":"media_portrait_small","field_file_image_alt_text[und][0][value]":"","field_file_image_title_text[und][0][value]":""},"type":"media","attributes":{"height":"300","width":"258","class":"media-element file-media-portrait-small"}}]]

Thu, 18 May 2017

16:00 - 17:00
L3

Skeletal muscles as prototypes of active materials

Lev Truskinovsky
(ESPCI)
Abstract

Considerable attention has been recently focused on the study of muscle tissues viewed as prototypes of new materials that can actively generate stresses. The intriguing mechanical properties of such systems can be linked to hierarchical internal architecture. To complicate matters further, they are driven internally by endogenous mechanisms supplying energy and maintaining non-equilibrium.  In this talk we review the principal mechanisms of force generation in muscles and discuss the adequacy of the available mathematical models.

Thu, 24 Jan 2013

16:00 - 17:00
DH 1st floor SR

Moving at the air-water interface

Elie Raphael
(ESPCI)
Abstract

It is generally believed that in order to generate waves, a small object (like an insect) moving at the air-water surface must exceed the minimum wave speed (about 23 centimeters per second). We show that this result is only valid for a rectilinear uniform motion, an assumption often overlooked in the literature. In the case of a steady circular motion (a situation of particular importance for the study of whirligig beetles), we demonstrate that no such velocity threshold exists and that even at small velocities a finite wave drag is experienced by the object. This wave drag originates from the emission of a spiral-like wave pattern. The results presented should be important for a better understanding of the propulsion of water-walking insects. For example, it would be very interesting to know if whirligig beetles can take advantage of such spirals for echolocation purposes.

Subscribe to ESPCI