Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Past events in this series


Fri, 17 May 2024

15:00 - 16:00
L5

Persistent Minimal Models in Rational Homotopy Theory

Kelly Spry Maggs
(École Polytechnique Fédérale de Lausanne (EPFL))

The join button will be published 30 minutes before the seminar starts (login required).

Abstract
One-parameter persistence and rational homotopy theory are two different ‘torsion-free’ algebraic models of space. Each enhances the cochain complex with additional algebraic structure— persistence equips cochain complexes with an action of a polynomial coefficient ring; rational homotopy theory equips cochains complexes with a graded-commutative product.
 
The persistent minimal model we introduce in this talk reconciles these two types of algebraic structures. Generalizing the classical case, we will describe how persistent minimal models are built by successively attaching the persistent rational homotopy groups into the persistent CDGA model. The attaching maps dualize to a new invariant called the persistent rational k-invariant.
 
This is joint work with Samuel Lavenir and Kathryn Hess: https://arxiv.org/abs/2312.08326


 

Fri, 24 May 2024

15:00 - 16:00
L5

Applying stratified homotopy theory in TDA

Lukas Waas
(Univeristy of Heidelberg)

The join button will be published 30 minutes before the seminar starts (login required).

Abstract

 

The natural occurrence of singular spaces in applications has led to recent investigations on performing topological data analysis (TDA) on singular data sets. However, unlike in the non-singular scenario, the homotopy type (and consequently homology) are rather course invariants of singular spaces, even in low dimension. This suggests the use of finer invariants of singular spaces for TDA, making use of stratified homotopy theory instead of classical homotopy theory.
After an introduction to stratified homotopy theory, I will describe the construction of a persistent stratified homotopy type obtained from a sample with two strata. This construction behaves much like its non-stratified counterpart (the Cech complex) and exhibits many properties (such as stability, and inference results) necessary for an application in TDA.
Since the persistent stratified homotopy type relies on an already stratified point-cloud, I will also discuss the question of stratification learning and present a convergence result which allows one to approximately recover the stratifications of a larger class of two-strata stratified spaces from sufficiently close non-stratified samples. In total, these results combine to a sampling theorem guaranteeing the (approximate) inference of (persistent) stratified homotopy types from non-stratified samples for many examples of stratified spaces arising from geometrical scenarios.

Fri, 31 May 2024

15:00 - 16:00
L5

Applied Topology TBC

Bernadette Stolz-Pretzer
(École Polytechnique Fédérale de Lausanne (EPFL))

The join button will be published 30 minutes before the seminar starts (login required).

Fri, 07 Jun 2024

15:00 - 16:00
L5

Morse Theory for Group Presentations and Applications

Ximena Fernandez
(Mathematical Institute, University of Oxford)

The join button will be published 30 minutes before the seminar starts (login required).

Abstract

Discrete Morse theory serves as a combinatorial tool for simplifying the structure of a given (regular) CW-complex up to homotopy equivalence, in terms of the critical cells of discrete Morse functions. In this talk, I will introduce a refinement of this theory that not only ensures homotopy equivalence with the simplified CW-complex but also guarantees a Whitehead simple homotopy equivalence. Furthermore, it offers an explicit description of the construction of the simplified Morse complex and provides bounds on the dimension of the complexes involved in the Whitehead deformation.
This refined approach establishes a suitable theoretical framework for addressing various problems in combinatorial group theory and topological data analysis. I will show applications of this technique to the Andrews-Curtis conjecture and computational methods for inferring the fundamental group of point clouds.

This talk is based on the article: Fernandez, X. Morse theory for group presentations. Trans. Amer. Math. Soc. 377 (2024), 2495-2523.

Fri, 14 Jun 2024

15:00 - 16:00
L5

The bifiltration of a relation, extended Dowker duality and studying neural representations

Melvin Vaupel
(Norweign University of Science and Technology)

The join button will be published 30 minutes before the seminar starts (login required).

Abstract

To neural activity one may associate a space of correlations and a space of population vectors. These can provide complementary information. Assume the goal is to infer properties of a covariate space, represented by ochestrated activity of the recorded neurons. Then the correlation space is better suited if multiple neural modules are present, while the population vector space is preferable if neurons have non-convex receptive fields. In this talk I will explain how to coherently combine both pieces of information in a bifiltration using Dowker complexes and their total weights. The construction motivates an interesting extension of Dowker’s duality theorem to simplicial categories associated with two composable relations, I will explain the basic idea behind it’s proof.