Past Applied Topology Seminar

22 October 2021
15:00
Pablo Camara

Further Information: 

Pablo G. Cámara is an Assistant Professor of Genetics at the University of Pennsylvania and a faculty member of the Penn Institute for Biomedical Informatics. He received a Ph.D. in Theoretical Physics in 2006 from Universidad Autónoma de Madrid. He performed research in string theory for several years, with postdoctoral appointments at Ecole Polytechnique, the European Organization for Nuclear Research (CERN), and University of Barcelona. Fascinated by the extremely interesting and fundamental open questions in biology, in 2014 he shifted his research focus into problems in quantitative biology, and joined the groups of Dr. Rabadan, at Columbia University, and Dr. Levine, at the Institute for Advanced Study (Princeton). Building upon techniques from applied topology and statistics, he has devised novel approaches to the inference of ancestral recombination, human recombination mapping, the study of cancer heterogeneity, and the analysis of single-cell RNA-sequencing data from dynamic and heterogeneous cellular populations.

Abstract

One of the prevailing paradigms in data analysis involves comparing groups of samples to statistically infer features that discriminate them. However, many modern applications do not fit well into this paradigm because samples cannot be naturally arranged into discrete groups. In such instances, graph techniques can be used to rank features according to their degree of consistency with an underlying metric structure without the need to cluster the samples. Here, we extend graph methods for feature selection to abstract simplicial complexes and present a general framework for clustering-independent analysis. Combinatorial Laplacian scores take into account the topology spanned by the data and reduce to the ordinary Laplacian score when restricted to graphs. We show the utility of this framework with several applications to the analysis of gene expression and multi-modal cancer data. Our results provide a unifying perspective on topological data analysis and manifold learning approaches to the analysis of point clouds.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Applied Topology Seminar
15 October 2021
15:00
Justin Curry
Abstract

In this talk I will present four case studies of sheaves and cosheaves in topological data analysis. The first two are examples of (co)sheaves in the small:

(1) level set persistence---and its efficacious computation via discrete Morse theory---and,

(2) decorated merge trees and Reeb graphs---enriched topological invariants that have enhanced classification power over traditional TDA methods. The second set of examples are focused on (co)sheaves in the large:

(3) understanding the space of merge trees as a stratified map to the space of barcodes and

(4) the development of a new "sheaf of sheaves" that organizes the persistent homology transform over different shapes.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Applied Topology Seminar
4 June 2021
15:00
Abstract

In recent years, topological and geometric data analysis (TGDA) has emerged as a new and promising field for processing, analyzing and understanding complex data. Indeed, geometry and topology form natural platforms for data analysis, with geometry describing the ''shape'' behind data; and topology characterizing / summarizing both the domain where data are sampled from, as well as functions and maps associated with them. In this talk, I will show how topological (and geometric ideas) can be used to analyze graph data, which occurs ubiquitously across science and engineering. Graphs could be geometric in nature, such as road networks in GIS, or relational and abstract. I will particularly focus on the reconstruction of hidden geometric graphs from noisy data, as well as graph matching and classification. I will discuss the motivating applications, algorithm development, and theoretical guarantees for these methods. Through these topics, I aim to illustrate the important role that topological and geometric ideas can play in data analysis.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Applied Topology Seminar
28 May 2021
15:00
Abstract

 In this work we systematically introduce relations to topological data analysis (TDA) in the categories of sets, simplicial complexes and vector spaces to characterize and study the general dynamical behaviors in a consistent way. The proposed framework not only offers new insights to the classical TDA methodologies, but also motivates new approaches to interesting applications of TDA in dynamical metric spaces, dynamical coverings, etc. The associated algorithm which produces barcode invariants, and relations in more general categories will also be discussed.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Applied Topology Seminar
21 May 2021
15:00
Zhengchao Wan
Abstract

In this work we present a thorough study of the theoretical properties and devise efficient algorithms for the persistent Laplacian, an extension of the standard combinatorial Laplacian to the setting of simplicial pairs: pairs of simplicial complexes related by an inclusion, which was recently introduced by Wang, Nguyen, and Wei. 

In analogy with the non-persistent case, we establish that the nullity of the q-th persistent Laplacian equals the q-th persistent Betti number of any given simplicial pair which provides an interesting connection between spectral graph theory and TDA. 

We further exhibit a novel relationship between the persistent Laplacian and the notion of Schur complement of a matrix. This relation permits us to uncover a link with the notion of effective resistance from network circuit theory and leads to a persistent version of the Cheeger inequality.

This relationship also leads to a novel and fundamentally different algorithm for computing the persistent Betti number for a pair of simplicial complexes which can be significantly more efficient than standard algorithms. 

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Applied Topology Seminar
7 May 2021
15:00
Dhananjay Bhaskar
Abstract

Active matter systems, ranging from liquid crystals to populations of cells and animals, exhibit complex collective behavior characterized by pattern formation and dynamic phase transitions. However, quantitative analysis of these systems is challenging, especially for heterogeneous populations of varying sizes, and typically requires expertise in formulating problem-specific order parameters. I will describe an alternative approach, using a combination of topological data analysis and machine learning, to investigate emergent behaviors in self-organizing populations of interacting discrete agents.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Applied Topology Seminar
30 April 2021
15:00
Don Sheehy

Further Information: 

Don Sheehy is an Associate Professor of Computer Science at North Carolina State University.  He received his B.S.E. from Princeton University and his Ph.D. in Computer Science from Carnegie Mellon University.   He spent two years as a postdoc at Inria Saclay in France.  His research is in algorithms and data structures in computational geometry and topological data analysis.  

Abstract

Given a persistence diagram with n points, we give an algorithm that produces a sequence of n persistence diagrams converging in bottleneck distance to the input diagram, the ith of which has i distinct (weighted) points and is a 2-approximation to the closest persistence diagram with that many distinct points. For each approximation, we precompute the optimal matching between the ith and the (i+1)st. Perhaps surprisingly, the entire sequence of diagrams as well as the sequence of matchings can be represented in O(n) space. The main approach is to use a variation of the greedy permutation of the persistence diagram to give good Hausdorff approximations and assign weights to these subsets. We give a new algorithm to efficiently compute this permutation, despite the high implicit dimension of points in a persistence diagram due to the effect of the diagonal. The sketches are also structured to permit fast (linear time) approximations to the Hausdorff distance between diagrams -- a lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches can also be used to compute a linear-size neighborhood graph directly, obviating the need for geometric data structures used in state-of-the-art methods for bottleneck computation.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

  • Applied Topology Seminar

Pages