Networks Seminar

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
27 November 2018
12:00
Ronaldo Menezes
Abstract

Crime is a major risk to society’s well-being, particularly in cities, and yet the scientific literature lacks a comprehensive statistical characterization of crime that could uncover some of the mechanisms behind such pervasive social phenomenon. Evidence of nonlinear scaling of urban indicators in cities, such as wages and serious crime, has motivated the understanding of cities as complex systems—a perspective that offers insights into resources limits and sustainability, but usually without examining the details of indicators. Notably, since the nineteenth century, criminal activities have been known not to occur uniformly within a city. Crime concentrates in such way that most of the offenses take place in few regions of the city. However, though this concentration is confirmed by different studies, the absence of broad examinations of the characteristics of crime concentration hinders not only the comprehension of crime dynamics but also the proposal of sounding counter-measures. Here, we developed a framework to characterize crime concentration which splits cities into regions with the same population size. We used disaggregated criminal data from 25 locations in the U.S. and the U.K. which include offenses in places spanning from 2 to 15 years of data. Our results confirmed that crime concentrates regardless of city and revealed that the level of concentration does not scale with city size. We found that distribution of crime in a city can be approximated by a power-law distribution with exponent α that depends on the type of crime. In particular, our results showed that thefts tend to concentrate more than robberies, and robberies more than burglaries. Though criminal activities present regularities of concentration, we found that criminal ranks have the tendency to change continuously over time. Such features support the perspective of crime as a complex system which demands analyses and evolving urban policies covering the city as a whole. 

 

4 December 2018
12:00
Gergely Röst
Abstract

Joint work with Zsolt Vizi (Bolyai Institute, University of Szeged, Hungary), Istvan Kiss (Department
of Mathematics, University of Sussex, United Kingdom)

Pairwise models have been proven to be a flexible framework for analytical approximations
of stochastic epidemic processes on networks that are in many situations much more accurate
than mean field compartmental models. The non-Markovian aspects of disease transmission
are undoubtedly important, but very challenging to incorporate them into both numerical
stochastic simulations and analytical investigations. Here we present a generalization of
pairwise models to non-Markovian epidemics on networks. For the case of infectious periods
of fixed length, the resulting pairwise model is a system of delay diff erential equations, which
shows excellent agreement with results based on the explicit stochastic simulations. For more
general distribution classes (uniform, gamma, lognormal etc.) the resulting models are PDEs
that can be transformed into systems of integro-diff erential equations. We derive pairwise
reproduction numbers and relations for the final epidemic size, and initiate a systematic
study of the impact of the shape of the particular distributions of recovery times on how
the time evolution of the disease dynamics play out.

22 January 2019
12:00
Florian Klimm
Abstract

In this seminar, I first discuss a paper by Aslak et al. on the detection of intermittent communities with the Infomap algorithm. Second, I present own work on the detection of intermittent communities with modularity-maximisation methods. 

Many real-world networks represent dynamic systems with interactions that change over time, often in uncoordinated ways and at irregular intervals. For example, university students connect in intermittent groups that repeatedly form and dissolve based on multiple factors, including their lectures, interests, and friends. Such dynamic systems can be represented as multilayer networks where each layer represents a snapshot of the temporal network. In this representation, it is crucial that the links between layers accurately capture real dependencies between those layers. Often, however, these dependencies are unknown. Therefore, current methods connect layers based on simplistic assumptions that do not capture node-level layer dependencies. For example, connecting every node to itself in other layers with the same weight can wipe out dependencies between intermittent groups, making it difficult or even impossible to identify them. In this paper, we present a principled approach to estimating node-level layer dependencies based on the network structure within each layer. We implement our node-level coupling method in the community detection framework Infomap and demonstrate its performance compared to current methods on synthetic and real temporal networks. We show that our approach more effectively constrains information inside multilayer communities so that Infomap can better recover planted groups in multilayer benchmark networks that represent multiple modes with different groups and better identify intermittent communities in real temporal contact networks. These results suggest that node-level layer coupling can improve the modeling of information spreading in temporal networks and better capture intermittent community structure.

Aslak, Ulf, Martin Rosvall, and Sune Lehmann. "Constrained information flows in temporal networks reveal intermittent communities." Physical Review E 97.6 (2018): 062312.

 

Add to My Calendar