Stochastic Analysis & Mathematical Finance Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
12 October 2020
16:00
IOANNIS KARATZAS
Abstract

We revisit the variational characterization of conservative diffusion as entropic gradient flow and provide for it a probabilistic interpretation based on stochastic calculus. It was shown by Jordan, Kinderlehrer, and Otto that, for diffusions of Langevin–Smoluchowski type, the Fokker–Planck probability density flow maximizes the rate of relative entropy dissipation, as measured by the distance traveled in the ambient space of probability measures with finite second moments, in terms of the quadratic Wasserstein metric. We obtain novel, stochastic-process versions of these features, valid along almost every trajectory of the diffusive motion in the backward direction of time, using a very direct perturbation analysis. By averaging our trajectorial results with respect to the underlying measure on path space, we establish the maximal rate of entropy dissipation along the Fokker–Planck flow and measure exactly the deviation from this maximum that corresponds to any given perturbation. As a bonus of our trajectorial approach we derive the HWI inequality relating relative entropy (H), Wasserstein distance (W) and relative Fisher information (I).

 

  • Stochastic Analysis & Mathematical Finance Seminars
19 October 2020
16:00
CHRISTA CUCHIERO
Abstract

Abstract: A recent paradigm views deep neural networks as discretizations of certain controlled ordinary differential equations, sometimes called neural ordinary differential equations. We make use of this perspective to link expressiveness of deep networks to the notion of controllability of dynamical systems. Using this connection, we study an expressiveness property that we call universal interpolation, and show that it is generic in a certain sense. The universal interpolation property is slightly weaker than universal approximation, and disentangles supervised learning on finite training sets from generalization properties. We also show that universal interpolation holds for certain deep neural networks even if large numbers of parameters are left untrained, and are instead chosen randomly. This lends theoretical support to the observation that training with random initialization can be successful even when most parameters are largely unchanged through the training. Our results also explore what a minimal amount of trainable parameters in neural ordinary differential equations could be without giving up on expressiveness.

Joint work with Martin Larsson, Josef Teichmann.

  • Stochastic Analysis & Mathematical Finance Seminars
26 October 2020
16:00
Abstract

Trading of financial instruments has largely moved away from floor trading and onto electronic exchanges. Orders to buy and sell are queued at these exchanges in a limit-order book. While a full analysis of the dynamics of a limit-order book requires an understanding of strategic play among multiple agents, and is thus extremely complex, so-called zero-intelligence Poisson models have been shown to capture many of the statistical features of limit-order book evolution. These models can be addressed by traditional queueing theory techniques, including Laplace transform analysis. In this work, we demonstrate in a simple setting that another queueing theory technique, approximating the Poisson model by a diffusion model identified as the limit of a sequence of scaled Poisson models, can also be implemented. We identify the diffusion limit, find an embedded semi-Markov model in the limit, and determine the statistics of the embedded semi-Markov model. Along the way, we introduce and study a new type of process, a generalization of skew Brownian motion that we call two-speed Brownian motion.

  • Stochastic Analysis & Mathematical Finance Seminars
Add to My Calendar