Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Past events in this series


Mon, 10 Nov 2025
15:30
L3

$\Phi^4_3$ as a Markov field

Nikolay Barashkov
(Max Planck Institute Leipzig)
Abstract

Random Fields with posses the Markov Property have played an important role in the development of Constructive Field Theory. They are related to their relativistic counterparts through Nelson Reconstruction. In this talk I will describe an attempt to understand the Markov Property of the $\Phi^4$ measure in 3 dimensions. We will also discuss the Properties of its Generator (i.e) the $\Phi^4_3$ Hamiltonian. This is based on Joint work with T. Gunaratnam.

Mon, 17 Nov 2025

15:30 - 16:30
L3

Stochastic Graphon Games with Interventions

Eyal NEUMANN
(Imperial College London)
Abstract

We consider targeted intervention problems in dynamic network and graphon games. First, we study a general dynamic network game in which players interact over a graph and seek to maximize their heterogeneous, concave goal functionals. We establish the existence and uniqueness of a Nash equilibrium in both the finite-player network game and the corresponding infinite-player graphon game, and prove its convergence as the number of players tends to infinity. We then introduce a central planner who implements a dynamic targeted intervention. Given a fixed budget, the central planner maximizes the average welfare at equilibrium by perturbing the players' heterogeneous goal functionals. Using a novel fixed-point argument, we prove the existence and uniqueness of an optimal intervention in the graphon setting, and show that it achieves near-optimal performance in large finite networks. Finally, we study the special case of linear-quadratic goal functionals and derive semi-explicit solutions for the optimal intervention.

 

This is a joint work with Sturmius Tuschmann.  


 

Mon, 24 Nov 2025
15:30
L3

Local convergence and metastability for mean-field particles in a multi-well potential

Pierre Monmarché
(Université Gustave Eiffel)
Abstract

We consider particles following a diffusion process in a multi-well potential and attracted by their barycenter (corresponding to the particle approximation of the Wasserstein flow of a suitable free energy). It is well-known that this process exhibits phase transitions: at high temperature, the mean-field limit has a single stationary solution, the N-particle system converges to equilibrium at a rate independent from N and propagation of chaos is uniform in time. At low temperature, there are several stationary solutions for the non-linear PDE, and the limit of the particle system as N and t go to infinity do not commute. We show that, in the presence of multiple stationary solutions, it is still possible to establish local convergence rates for initial conditions starting in some Wasserstein balls (this is a joint work with Julien Reygner). In terms of metastability for the particle system, we also show that for these initial conditions, the exit time of the empirical distribution from some neighborhood of a stationary solution is exponentially large with N and approximately follows an exponential distribution, and that propagation of chaos holds uniformly over times up to this expected exit time (hence, up to times which are exponentially large with N). Exactly at the critical temperature below which multiple equilibria appear, the situation is somewhat degenerate and we can get uniform in N convergence estimates, but polynomial instead of exponential.

Mon, 19 Jan 2026

15:30 - 16:30
L3

TBA

Prof. Andreas Kyprianou
(Dept of Mathematics University of Warwick)
Abstract

TBA