Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Past events in this series


Mon, 24 Nov 2025

15:30 - 16:30
L3

Local convergence and metastability for mean-field particles in a multi-well potential

Pierre Monmarché
(Université Gustave Eiffel)
Abstract

We consider particles following a diffusion process in a multi-well potential and attracted by their barycenter (corresponding to the particle approximation of the Wasserstein flow of a suitable free energy). It is well-known that this process exhibits phase transitions: at high temperature, the mean-field limit has a single stationary solution, the N-particle system converges to equilibrium at a rate independent from N and propagation of chaos is uniform in time. At low temperature, there are several stationary solutions for the non-linear PDE, and the limit of the particle system as N and t go to infinity do not commute. We show that, in the presence of multiple stationary solutions, it is still possible to establish local convergence rates for initial conditions starting in some Wasserstein balls (this is a joint work with Julien Reygner). In terms of metastability for the particle system, we also show that for these initial conditions, the exit time of the empirical distribution from some neighborhood of a stationary solution is exponentially large with N and approximately follows an exponential distribution, and that propagation of chaos holds uniformly over times up to this expected exit time (hence, up to times which are exponentially large with N). Exactly at the critical temperature below which multiple equilibria appear, the situation is somewhat degenerate and we can get uniform in N convergence estimates, but polynomial instead of exponential.

Mon, 19 Jan 2026

15:30 - 16:30
L3

TBA

Prof. Andreas Kyprianou
(Dept of Mathematics University of Warwick)
Abstract

TBA

Mon, 02 Feb 2026

15:30 - 16:30
L3

Mean field games without rational expectations

Benjamin MOLL
(LSE)
Abstract
Mean Field Game (MFG) models implicitly assume “rational expectations”, meaning that the heterogeneous agents being modeled correctly know all relevant transition probabilities for the complex system they inhabit. When there is common noise, it becomes necessary to solve the “Master equation” (a.k.a. “Monster equation”), a Hamilton-JacobiBellman equation in which the infinite-dimensional density of agents is a state variable. The rational expectations assumption and the implication that agents solve Master equations is unrealistic in many applications. We show how to instead formulate MFGs with non-rational expectations. Departing from rational expectations is particularly relevant in “MFGs with a low-dimensional coupling”, i.e. MFGs in which agents’ running reward function depends on the density only through low-dimensional functionals of this density. This happens, for example, in most macroeconomics MFGs in which these lowdimensional functionals have the interpretation of “equilibrium prices.” In MFGs with a low-dimensional coupling, departing from rational expectations allows for completely sidestepping the Master equation and for instead solving much simpler finite-dimensional HJB equations. We introduce an adaptive learning model as a particular example of nonrational expectations and discuss its properties.