Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Past events in this series


Thu, 19 Feb 2026

14:00 - 15:00
Lecture Room 3

TBA

Jongho Park
(King Abdullah University of Science and Technology (KAUST))
Abstract

TBA

Thu, 26 Feb 2026

14:00 - 15:00
Lecture Room 3

TBA

Carolina Urzua Torres
(TU Delft)
Abstract

TBA

Thu, 05 Mar 2026

14:00 - 15:00
Lecture Room 3

Resonances as a computational tool

Katharina Schratz
(Sorbonne University)
Abstract

A large toolbox of numerical schemes for dispersive equations has been established, based on different discretization techniques such as discretizing the variation-of-constants formula (e.g., exponential integrators) or splitting the full equation into a series of simpler subproblems (e.g., splitting methods). In many situations these classical schemes allow a precise and efficient approximation. This, however, drastically changes whenever non-smooth phenomena enter the scene such as for problems at low regularity and high oscillations. Classical schemes fail to capture the oscillatory nature of the solution, and this may lead to severe instabilities and loss of convergence. In this talk I present a new class of resonance based schemes. The key idea in the construction of the new schemes is to tackle and deeply embed the underlying nonlinear  structure of resonances into the numerical discretization. As in the continuous case, these terms are central to structure preservation and offer the new schemes strong geometric properties at low regularity.

Thu, 12 Mar 2026

14:00 - 15:00
Lecture Room 3

TBA

Anna Lisa Varri
(University of Edinburgh)
Abstract

TBA

Thu, 14 May 2026

14:00 - 15:00
Lecture Room 3

TBA

Prof Dr Maria Lukacova
(Johannes Gutenberg University Mainz)
Abstract

TBA

Thu, 28 May 2026

14:00 - 15:00
Lecture Room 3

Reducing Sample Complexity in Stochastic Derivative-Free Optimization via Tail Bounds and Hypothesis Testing

Prof Luis Nunes Vicente
(Lehigh University)
Abstract

We introduce and analyze new probabilistic strategies for enforcing sufficient decrease conditions in stochastic derivative-free optimization, with the goal of reducing sample complexity and simplifying convergence analysis. First, we develop a new tail bound condition imposed on the estimated reduction in function value, which permits flexible selection of the power used in the sufficient decrease test, q in (1,2]. This approach allows us to reduce the number of samples per iteration from the standard O(delta^{−4}) to O(delta^{-2q}), assuming that the noise moment of order q/(q-1) is bounded. Second, we formulate the sufficient decrease condition as a sequential hypothesis testing problem, in which the algorithm adaptively collects samples until the evidence suffices to accept or reject a candidate step. This test provides statistical guarantees on decision errors and can further reduce the required sample size, particularly in the Gaussian noise setting, where it can approach O(delta^{−2-r}) when the decrease is of the order of delta^r. We incorporate both techniques into stochastic direct-search and trust-region methods for potentially non-smooth, noisy objective functions, and establish their global convergence rates and properties. 

This is joint work with Anjie Ding, Francesco Rinaldi, and Damiano Zeffiro.

 

Thu, 18 Jun 2026

14:00 - 15:00
Lecture Room 3

TBA

Daniele Boffi
(King Abdullah University of Science and Technology (KAUST))
Abstract

TBA