Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Past events in this series


Tue, 27 Jan 2026
12:30
C3

Electrostatic regulation of biomolecular condensates.

Jasper Knox
(Dept of Engineering Maths University of Bristol)
Abstract

Biomolecular condensates are membraneless assemblies of biomolecules (such as proteins or nucleic acids) formed through liquid-liquid phase separation. Many biomolecules are electrically charged, making condensates highly sensitive to the local electrochemical environment. In this talk, I will discuss our recent theoretical work on the dynamics of charged condensates and the role of salt concentration in their evolution toward equilibrium. Two-dimensional simulations of a thermodynamically consistent phase-field model reveal that salt can arrest coarsening by affecting the relative strength of interfacial energy, associated with the condensate surface, and electrostatic energy, arising from the formation of an electric double layer across liquid interfaces. At low salt concentrations, the electrostatic energy of the double layer becomes comparable to the interfacial energy, resulting in the emergence of multiple condensates with a fixed size. These results show that salt can act as a dynamic regulator of condensate size, with implications for both understanding biological organisation and modulating the behaviour of synthetic condensates.

Tue, 24 Feb 2026
12:30
C4

The flow-induced compaction of visco-elastic and visco-plastic soft porous media

Emma Bouckley
(DAMPT, University of Cambridge)
Abstract

The flow of viscous fluid through a soft porous medium exerts drag on the matrix and induces non-uniform deformation. This behaviour can become increasingly complicated when the medium has a complex rheology, such that deformations exhibit elastic (reversible) and plastic (irreversible) behaviour, or when the rheology has a viscous component, making the response of the medium rate dependent. This is perhaps particularly the case when compaction is repeated over many cycles, or when additional forces (e.g. gravity or an external load) act simultaneously with flow to compact the medium, as in many industrial and geophysical applications. Here, we explore the interaction of viscous effects with elastic and plastic media from a theoretical standpoint, focussing on unidirectional compaction. We initially consider how the medium responds to the reversal of flow forcing when some of its initial deformation is non-recoverable. More generally, we explore how spatial variations in stress arising from fluid flow interact with the stress history of the sample when some element of its rheology is plastic and rate-dependent, and characterise the response of the medium depending on the nature of its constitutive laws for effective stress and permeability.