Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Past events in this series


Wed, 21 May 2025
12:00
C1

On the converse of Pansu’s differentiability theorem

Andrea Merlo
(Universidad del País Vasco)
Abstract

In this talk I will present two new results concerning differentiability of Lipschitz maps between Carnot groups. The former is a suitable adaptation of Pansu-Rademacher differentiability theorem to general Radon measures. More precisely we construct a suitable bundle associated to the measure along which Lipschitz maps are differentiable, very much in the spirit of the results of Alberti-Marchese. The latter is the converse of Pansu’s theorem. Namely, let G be a Carnot group and μ a Radon measure on G. Suppose further that every Lipschitz map between G and H, some other Carnot group, is Pansu differentiable μ-almost everywhere. We show that μ must be absolutely continuous with respect to the Haar measure of G. This is a joint work with Guido De Philippis, Andrea Marchese, Andrea Pinamonti and Filip Rindler.

This new sub-Riemannian result will be an excuse to present and discuss the techniques employed in Euclidean spaces to prove the converse of Rademacher's theorem.

Thu, 22 May 2025
12:00
C6

Homogenisation for compressible fluids

Pierre Gonin-Joubert
(Université Claude Bernard Lyon 1)
Abstract

Several physical models are available to understand the dynamics of fluid mixtures, including the so-called Baer-Nunziato models. The partial differential equations associated with these models look like those of Navier-Stokes, with the addition of new relaxation terms. One strategy to obtain these models is homogenisation: starting from a mesoscopic mixture, where two pure fluids satisfying the compressible Navier-Stokes equations share the space between them, a change of scale is performed to obtain a macroscopic mixture, where the two fluids can coexist at any point in space.

This problem concerns the study of the Navier-Stokes equations with strongly oscillating initial data. We'll start by explaining some results in this framework, in one dimension of space and on the torus, for barotropic fluids. We will then detail the various steps involved in demonstrating homogenisation. Finally, we'll explain how to adapt this reasoning to homogenisation for perfect gases, with and without heat conduction.