Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Past events in this series


Mon, 14 Oct 2024
16:30
L4

Large Population Limit for Interacting Particle Systems on Weighted Graphs

Nathalie Ayi
(Laboratoire Jacques-Louis Lions, Sorbonne-Université, Paris)
Abstract

When studying interacting particle systems, two distinct categories emerge: indistinguishable systems, where particle identity does not influence system dynamics, and non-exchangeable systems, where particle identity plays a significant role. One way to conceptualize these second systems is to see them as particle systems on weighted graphs. In this talk, we focus on the latter category. Recent developments in graph theory have raised renewed interest in understanding largepopulation limits in these systems. Two main approaches have emerged: graph limits and mean-field limits. While mean-field limits were traditionally introduced for indistinguishable particles, they have been extended to the case of non-exchangeable particles recently. In this presentation, we introduce several models, mainly from the field of opinion dynamics, for which rigorous convergence results as N tends to infinity have been obtained. We also clarify the connection between the graph limit approach and the mean-field limit one. The works discussed draw from several papers, some co-authored with Nastassia Pouradier Duteil and David Poyato.

Mon, 28 Oct 2024
16:30

Lipschitz Regularity of harmonic maps from the Heisenberg group into CAT(0) spaces

Renan Assimos
(Leibniz Universität Hannover)
Abstract

We prove the local Lipschitz continuity of energy minimizing harmonic maps between singular spaces, more specifically from the n-dimensional Heisenberg group into CAT(0) spaces. The present result paves the way for a general regularity theory of sub-elliptic harmonic maps, providing a versatile approach applicable beyond the Heisenberg group.  Joint work with Yaoting Gui and Jürgen Jost.