Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Tue, 03 Jun 2025
16:00
C3

TBC

Robert Neagu
(KU Leuven)
Abstract

to follow

Wed, 04 Jun 2025
16:00
L6

TBA

Filippo Baroni
(University of Oxford)
Abstract

TBA

Thu, 05 Jun 2025

12:00 - 13:00
L3

OCIAM TBC

Gerhard Holzapfel
(TU Graz)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Extended Bio
Gerhard A. Holzapfel is a world-leading figure in biomechanics, currently serving as Professor and Head of the Institute of Biomechanics at Graz University of Technology (TUG), Austria. He also holds appointments as Adjunct Professor at the Norwegian University of Science and Technology (NTNU) in Trondheim and Visiting Professor at the University of Glasgow. From 2004 to 2013, he was Professor of Biomechanics at the Royal Institute of Technology (KTH) in Stockholm.

Following a PhD in Mechanical Engineering from Graz, Professor Holzapfel was awarded an Erwin Schrödinger Scholarship, enabling him to conduct research at Stanford University. He achieved his Habilitation at TU Vienna in 1996 and was the recipient of Austria’s prestigious START Award in 1997. Over subsequent decades, he has led pioneering work in computational biomechanics, including as Head of the Computational Biomechanics research group at TUG (1998–2004).

Professor Holzapfel has received numerous accolades, including the Erwin Schrödinger Prize of the Austrian Academy of Sciences (2011), listings among “The World’s Most Influential Scientific Minds” (Thomson Reuters, 2014), the William Prager Medal and Warner T. Koiter Medal (2021), an honorary doctorate from École des Mines de Saint-Étienne (2024), and election to the U.S. National Academy of Engineering (2025). In 2024, he was awarded a prestigious Synergy Grant from the European Research Council (ERC).

His research spans experimental and computational biomechanics and mechanobiology, with a particular focus on soft biological tissues and the cardiovascular system in both health and disease. His expertise includes nonlinear continuum mechanics, constitutive modelling, growth and remodeling, imaging and image-based modeling, and the mechanics of therapeutic interventions such as angioplasty and stenting.

Professor Holzapfel is the author of the widely adopted graduate textbook Nonlinear Solid Mechanics (Wiley), has co-edited seven additional books, and contributed chapters to over 30 volumes. He has published more than 300 peer-reviewed journal articles. He is also the co-founder and co-editor of the journal Biomechanics and Modeling in Mechanobiology (Springer). His work has been funded by numerous national and international agencies, including the Austrian Science Fund, NIH, the European Commission, and industry collaborators.

Thu, 05 Jun 2025

12:00 - 12:30
L4

TBA

Kate Zhu
(Mathematical Institute (University of Oxford))
Abstract

TBA

Thu, 05 Jun 2025
14:00
Lecture Room 3

Solving sparse linear systems using quantum computing algorithms

Leigh Lapworth
(Rolls-Royce)
Abstract

The currently available quantum computers fall into the NISQ (Noisy Intermediate Scale Quantum) regime. These enable variational algorithms with a relatively small number of free parameters. We are now entering the FTQC (Fault Tolerant Quantum Computer)  regime where gate fidelities are high enough that error-correction schemes are effective. The UK Quantum Missions include the target for a FTQC device that can perform a million operations by 2028, and a trillion operations by 2035.

 

This talk will present the outcomes from assessments of  two quantum linear equation solvers for FTQCs– the Harrow–Hassidim–Lloyd (HHL) and the Quantum Singular Value Transform (QSVT) algorithms. These have used sample matrices from a Computational Fluid Dynamics (CFD) testcase. The quantum solvers have also been embedded with an outer non-linear solver to judge their impact on convergence. The analysis uses circuit emulation and is used to judge the FTQC requirements to deliver quantum utility.

Thu, 05 Jun 2025
17:00
L3

TBA

Antoine Sedillot
(Universität Regensburg)
Fri, 06 Jun 2025

11:00 - 12:00
L4

Mathematical modeling of some aspects of Age-related Macular Degeneration (AMD)

Dr Luca Alasio
(INRIA Paris)
Abstract

Our visual perception of the world heavily relies on sophisticated and delicate biological mechanisms, and any disruption to these mechanisms negatively impacts our lives. Age-related macular degeneration (AMD) affects the central field of vision and has become increasingly common in our society, thereby generating a surge of academic and clinical interest. I will present some recent developments in the mathematical modeling of the retinal pigment epithelium (RPE) in the retina in the context of AMD; the RPE cell layer supports photoreceptor survival by providing nutrients and participating in the visual cycle and “cellular maintenance". Our objectives include modeling the aging and degeneration of the RPE with a mechanistic approach, as well as predicting the progression of atrophic lesions in the epithelial tissue. This is a joint work with the research team of Prof. M. Paques at Hôpital National des Quinze-Vingts.


 

Fri, 06 Jun 2025

12:00 - 13:00
Quillen Room

TBD

Constantinos Papachristoforou
(University of Sheffield)
Abstract

TBD

Mon, 09 Jun 2025
12:15
L5

$3$-$(\alpha,\delta)$-Sasaki manifolds and strongly positive curvature

Ilka Agricola
(Philipps-Universität Marburg)
Abstract
$3$-$(\alpha,\delta)$-Sasaki manifolds are a natural generalisation of $3$-Sasaki manifolds, which in dimension $7$ are intricately related to $G_2$ geometry. We show how these are closely related to various types of quaternionic Kähler orbifolds via connections with skew-torsion and an interesting canonical submersion. Making use of this relation we discuss curvature operators and show that in dimension 7 many such manifolds have strongly positive curvature, a notion originally introduced by Thorpe. 

 
Mon, 09 Jun 2025
15:30
L3

TBC

Prof. Olivier Menoukeu Pamen
(University of Liverpool)
Mon, 09 Jun 2025
16:00
L6

TBC

Alexandra Kowalska
(Univesity of Oxford)
Abstract

TBC

Mon, 09 Jun 2025
16:30
L4

Annuli and strip : the effect on the vortex patterns for the Ginzburg-Landau energy

Amandine Aftalion
(CNRS; laboratoire de mathématiques d'Orsay, Univ Paris-Saclay)
Abstract

We are going to study the Ginzburg-Landau energy for two specific geometries, related to the very experiments on fermionic condensates: annuli and strips 

The specific geometry of a strip provides connections between solitons and vortices, called solitonic vortices, which are vortices with a solitonic behaviour in the infinite direction of the strip. Therefore, they are very different from classical vortices which have an algebraic decay at infinity. We show that there exist stationary solutions to the Gross-Pitaevskii equation with k vortices on a transverse line, which bifurcate from the soliton solution as the width of the strip is increased. This is motivated by recent experiments on the instability of solitons by imposing a phase shift in an elongated condensate for bosonic or fermionic atoms.

For annuli, we prescribe a very large degree on the outer boundary and find that either there is a transition from a giant vortex to vortices also in the bulk but tending to the outer boundary.

This is joint work with Ph. Gravejat and E.Sandier for solitonice vortices and Remy Rodiac for annuli.
 

Wed, 11 Jun 2025
11:00
L5

Conditioning Diffusions Using Malliavin Calculus

Dr Jakiw Pidstrigach
(Department of Statistics, University of Oxford)
Abstract

In stochastic optimal control and conditional generative modelling, a central computational task is to modify a reference diffusion process to maximise a given terminal-time reward. Most existing methods require this reward to be differentiable, using gradients to steer the diffusion towards favourable outcomes. However, in many practical settings, like diffusion bridges, the reward is singular, taking an infinite value if the target is hit and zero otherwise. We introduce a novel framework, based on Malliavin calculus and path-space integration by parts, that enables the development of methods robust to such singular rewards. This allows our approach to handle a broad range of applications, including classification, diffusion bridges, and conditioning without the need for artificial observational noise. We demonstrate that our approach offers stable and reliable training, outperforming existing techniques. 

Wed, 11 Jun 2025
16:00
L5

TBA

Gabriel Corrigan
(University of Glasgow)
Abstract

TBA

Thu, 12 Jun 2025

12:00 - 13:00
L3

Microfluidic model of haemodynamics in complex media

Anne Juel
(University of Manchester)

The join button will be published 30 minutes before the seminar starts (login required).

Further Information

Short Bio
Anna Juel is a physicist whose research explores the complex dynamics of material systems, particularly in two-phase flows and wetting phenomena. Her group focuses on microfluidics, fluid-structure interactions, and complex fluid flows, with applications ranging from chocolate moulding to airway reopening and flexible displays. Based at the Manchester Centre for Nonlinear Dynamics, her experimental work often uncovers surprising behaviour, driving new insights through combined experimentation and modelling.

Abstract
The flow of red blood cells (RBCs) in heterogeneous biological porous tissues such as the human placenta, remains poorly understood despite the essential role the microvasculature plays in maintaining overall health and functionality of tissues, blood flow and transport mechanisms. This is in great part because the usual description of blood as a simple fluid breaks down when the size of RBCs is similar to that of the vessel. In this study, we use a bespoke suspension of ultra-soft microcapsules with a poroelastic membrane, which have been previously shown to mimic the motion and large deformations of RBCs in simple conduits [1], in order to explore soft suspension flows in planar porous media. Our planar porous devices are Hele-Shaw channels, where the capsules are slightly confined within the channel depth, and in which we increase confinement by adding regular or disordered arrays of pillars. We perform experiments that relate the global resistance of the suspension flow through the porous media to the local distributions of capsule concentration and velocity as a function of volume fraction, capillary number Ca, the ratio of viscous to elastic forces, and geometry. We find that the flow patterns in Hele-Shaw channels and ordered porous media differ significantly from those in disordered porous media, where the presence of capsules promotes preferential paths and supports anomalous capsule dispersion. In contrast, the flows in ordered geometries develop intriguing shear-banding patterns as the volume fraction increases. Despite the complex microscopic dynamics of the suspension flow, we observe the emergence of similar scaling laws for the global flow resistance in both regular and disordered porous media as a function of Ca. We find that the scaling exponent decreases with increasing volume fraction because of cooperative capsule mechanisms, which yield relative stiffening of the system for increasing Ca.
 
[1] Chen et al. Soft Matter 19, 5249- 5261.
 
Thu, 12 Jun 2025

12:00 - 12:30
L4

TBA

Boris Andrews
(Mathematical Institute (University of Oxford))
Abstract

TBA

Thu, 12 Jun 2025

14:00 - 15:00
Lecture Room 3

Finite volumes for a generalized Poisson-Nernst-Planck system with cross-diffusion and size exclusion

Clément Cancès
(INRIA LILLE)
Abstract

We propose and analyse two structure preserving finite volume schemes to approximate the solutions to a cross-diffusion system with self-consistent electric interactions introduced by Burger, Schlake & Wolfram (2012). This system has been derived thanks to probabilistic arguments and admits a thermodynamically motivated Lyapunov functional that is preserved by suitable two-point flux finite volume approximations. This allows to carry out the mathematical analysis of two schemes to be compared.

This is joint work with Maxime Herda and Annamaria Massimini.

 

 

Thu, 12 Jun 2025
16:00
L5

TBC

Chaman Kumar
(Indian Institute of Technology)
Thu, 12 Jun 2025
16:00
Lecture Room 4

TBA

Chris Williams
(University of Nottingham)
Fri, 13 Jun 2025

11:00 - 12:00
L4

Cell-bulk compartmental reaction-diffusion systems: symmetry-breaking patterns with equal diffusivities and diffusion-Induced synchrony.

Professor Michael Ward
(Dept of Mathematics University of British Columbia)
Abstract

We investigate pattern formation for a 2D PDE-ODE bulk-cell model, where one or more bulk diffusing species are coupled to nonlinear intracellular
reactions that are confined within a disjoint collection of small compartments. The bulk species are coupled to the spatially segregated
intracellular reactions through Robin conditions across the cell boundaries. For this compartmental-reaction diffusion system, we show that
symmetry-breaking bifurcations leading to stable asymmetric steady-state patterns, as regulated by a membrane binding rate ratio, occur even when
two bulk species have equal bulk diffusivities. This result is in distinct contrast to the usual, and often biologically unrealistic, large
differential diffusivity ratio requirement for Turing pattern formation from a spatially uniform state. Secondly, for the case of one-bulk
diffusing species in R^2, we derive a new memory-dependent ODE integro-differential system that characterizes how intracellular
oscillations in the collection of cells are coupled through the PDE bulk-diffusion field. By using a fast numerical approach relying on the
``sum-of-exponentials'' method to derive a time-marching scheme for this nonlocal system, diffusion induced synchrony is examined for various
spatial arrangements of cells using the Kuramoto order parameter. This theoretical modeling framework, relevant when spatially localized nonlinear
oscillators are coupled through a PDE diffusion field, is distinct from the traditional Kuramoto paradigm for studying oscillator synchronization on
networks or graphs. (Joint work with Merlin Pelz, UBC and UMinnesota).

Fri, 13 Jun 2025

12:00 - 13:00
Quillen Room

TBD

Ittihad Hasib
(University of Warwick)
Abstract

TBD

Mon, 16 Jun 2025
16:00
C3

TBC

Charlotte Clare-Hunt
(University of Oxford)
Abstract

TBC

Tue, 17 Jun 2025

14:00 - 15:00
L4

TBA

Imre Leader
(University of Cambridge)