Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
3 May 2018
16:00
to
17:30
Beatrice Acciaio
Abstract

Title: Generalized McKean-Vlasov stochastic control problems.

Abstract: I will consider McKean-Vlasov stochastic control problems 
where the cost functions and the state dynamics depend upon the joint 
distribution of the controlled state and the control process. First, I 
will provide a suitable version of the Pontryagin stochastic maximum 
principle, showing that, in the present general framework, pointwise 
minimization of the Hamiltonian with respect to the control is not a 
necessary optimality condition. Then I will take a different 
perspective, and present a variational approach to study a weak 
formulation of such control problems, thereby establishing a new 
connection between those and optimal transport problems on path space.

The talk is based on a joint project with J. Backhoff-Veraguas and R. Carmona.

  • Mathematical and Computational Finance Seminar
3 May 2018
16:00
to
17:30
Pedro Reis
Abstract

Elastic gridshells arise from the buckling of an initially planar grid of rods. Architectural elastic gridshells first appeared in the 1970’s. However, to date, only a limited number of examples have been constructed around the world, primarily due to the challenges involved in their structural design. Yet, elastic gridshells are highly appealing: they can cover wide spans with low self-weight, they allow for aesthetically pleasing shapes and their construction is typically simple and rapid. A more mundane example is the classic pasta strainer, which, with its remarkably simple design, is a must-have in every kitchen.

This talk will focus on the geometry-driven nature of elastic gridshells. We use a geometric model based on the theory of discrete Chebyshev nets (originally developed for woven fabric) to rationalize their actuated shapes. Validation is provided by precision experiments and rod-based simulations. We also investigate the linear mechanical response (rigidity) and the non-local behavior of these discrete shells under point-load indentation. Combining experiments, simulations, and scaling analysis leads to a master curve that relates the structural rigidity to the underlying geometric and material properties. Our results indicate that the mechanical response of elastic gridshells, and their underlying characteristic forces, are dictated by Euler's elastica rather than by shell-related quantities. The prominence of geometry that we identify in elastic gridshells should allow for our results to transfer across length scales: from architectural structures to micro/nano–1-df mechanical actuators and self-assembly systems.

  • Industrial and Applied Mathematics Seminar
4 May 2018
12:00
Michael Adamer
Abstract

Steady state chemical reaction models can be thought of as algebraic varieties whose properties are determined by the network structure. In experimental set-ups we often encounter the problem of noisy data points for which we want to find the corresponding steady state predicted by the model. Depending on the network there may be many such points and the number of which is given by the euclidean distance degree (ED degree). In this talk I show how certain properties of networks relate to the ED degree and how the runtime of numerical algebraic geometry computations scales with the ED degree.

  • Applied Algebra and Topology

Pages

Add to My Calendar