Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
11 June 2019
12:00
Abstract

The comparison of graphs is a vitally important, yet difficult task which arises across a number of diverse research areas including biological and social networks. There have been a number of approaches to define graph distance however often these are not metrics (rendering standard data-mining techniques infeasible), or are computationally infeasible for large graphs. In this work, we define a new metric based on the spectrum of the non-backtracking graph operator and show that it can not only be used to compare graphs generated through different mechanisms but can reliably compare graphs of varying size. We observe that the family of Watts-Strogatz graphs lie on a manifold in the non-backtracking spectral embedding and show how this metric can be used in a standard classification problem of empirical graphs.

11 June 2019
12:00
to
13:15
Elizabeth Winstanley
Abstract

The renormalized expectation value of the stress energy tensor (RSET) is an object of central importance in quantum field theory in curved space-time, but calculating this on black hole space-times is far from trivial.  The vacuum polarization (VP) of a quantum scalar field is computationally simpler and shares some features with the RSET.  In this talk we consider the properties of the VP for a massless, conformally coupled scalar field on asymptotically anti-de Sitter black holes with spherical, flat and hyperbolic horizons.  We focus on the effect of the different horizon curvature on the VP, and the role played by the boundary conditions far from the black hole.     

 

  • Quantum Field Theory Seminar
11 June 2019
14:00
Roy S Wikramaratna
Abstract

ACORN generators represents an approach to generating uniformly distributed pseudo-random numbers which is straightforward to implement for arbitrarily large order $k$ and modulus $M=2^{30t}$ (integer $t$). They give long period sequences which can be proven theoretically to approximate to uniformity in up to $k$ dimensions, while empirical statistical testing demonstrates that (with a few very simple constraints on the choice of parameters and the initialisation) the resulting sequences can be expected to pass all the current standard tests .

The standard TestU01 Crush and BigCrush Statistical Test Suites are used to demonstrate for ACORN generators with order $8≤k≤25$ that the statistical performance improves as the modulus increases from $2^{60}$ to $2^{120}$. With $M=2^{120}$ and $k≥9$, it appears that ACORN generators pass all the current TestU01 tests over a wide range of initialisations; results are presented that demonstrate the remarkable consistency of these results, and explore the limits of this behaviour.

This contrasts with corresponding results obtained for the widely-used Mersenne Twister MT19937 generator, which consistently failed on two of the tests in both the Crush and BigCrush test suites.

There are other pseudo-random number generators available which will also pass all the TestU01 tests. However, for the ACORN generators it is possible to go further: we assert that an ACORN generator might also be expected to pass any more demanding tests for $p$-dimensional uniformity that may be required in the future, simply by choosing the order $k>p$, the modulus $M=2^{30t}$ for sufficiently large $t$, together with any odd value for the seed and an arbitrary set of initial values. We note that there will be $M/2$ possible odd values for the seed, with each such choice of seed giving rise to a different $k$-th order ACORN sequence satisfying all the required tests.

This talk builds on and extends results presented at the recent discussion meeting on “Numerical algorithms for high-performance computational science” at the Royal Society London, 8-9 April 2019, see download link at bottom of web page http://acorn.wikramaratna.org/references.html.

  • Numerical Analysis Group Internal Seminar
13 June 2019
12:00
Yuning Liu
Abstract

We study the small Deborah number limit of the Doi-Onsager equation for the dynamics of nematic liquid crystals. This is a Smoluchowski-type equation that characterizes the evolution of a number density function, depending upon both particle position and its orientation vector, which lies on the unit sphere. We prove that, in the low temperature regime, when the Deborah number tends to zero, the family of solutions with rough initial data near local equilibria will converge to a local equilibrium distribution prescribed by a weak solution of the harmonic map heat flow into the sphere. This flow is a special case of the gradient flow to the Oseen-Frank energy functional for nematic liquid crystals and the existence of its global weak solution was first obtained by Y.M Chen, using Ginzburg-Landau approximation.  The key ingredient of our result is to show the strong compactness of the family of number density functions and the proof relies on the strong compactness of the corresponding second moment (or the Q-tensor), a spectral decomposition of the linearized operator near the limiting local equilibrium distribution, as well as the energy dissipation estimates.  This is a joint work with Wei Wang in Zhejiang university.
 

  • PDE CDT Lunchtime Seminar
13 June 2019
14:00
Professor Ricardo Nochetto
Abstract

The Landau-DeGennes Q-model of uniaxial nematic liquid crystals seeks a rank-one

traceless tensor Q that minimizes a Frank-type energy plus a double well potential

that confines the eigenvalues of Q to lie between -1/2 and 1. We propose a finite

element method (FEM) which preserves this basic structure and satisfies a discrete

form of the fundamental energy estimates. We prove that the discrete problem Gamma

converges to the continuous one as the meshsize tends to zero, and propose a discrete

gradient flow to compute discrete minimizers. Numerical experiments confirm the ability

of the scheme to approximate configurations with half-integer defects, and to deal with

colloidal and electric field effects. This work, joint with J.P. Borthagaray and S.

Walker, builds on our previous work for the Ericksen's model which we review briefly.

  • Computational Mathematics and Applications Seminar

Pages

Add to My Calendar