Past History of Mathematics Seminar

3 December 2019
11:00
Abstract

Charles Babbage (1791–1871) was Lucasian Professor of mathematics in Cambridge from 1828–1839. He displayed a fertile curiosity that led him to study many contemporary processes and problems in a way which emphasised an analytic, data driven view of life.

In popular culture Babbage has been celebrated as an anachronistic Victorian engineer. In reality, Babbage is best understood as a figure rooted in the enlightenment, who had substantially completed his core investigations into 'mechanisation of thought' by the mid 1830s: he is thus an anachronistic Georgian: the construction of his first difference engine design is contemporary with the earliest public railways in Britain.

A fundamental question that must strike anybody who examines Babbage's precocious designs is: how could one individual working alone have synthesised a workable computer design, designing an object whose complexity of behaviour so far exceeded that of contemporary machines that it would not be matched for over a hundred years?

We shall explore the extent to which the answer lies in the techniques Babbage developed to reason about complex systems. His Notation which shows the geometry, timing, causal chains and the abstract components of his machines, has a direct parallel in the Hardware Description Languages developed since 1975 to aid the design of large scale electronics. In this presentation, we shall provide a basic tutorial on Babbage's notation showing how his concepts of 'pieces' and 'working points' effectively build a graph in which both parts and their interactions are represented by nodes, with edges between part-nodes and interaction-nodes denoting ownership, and edges between interaction-nodes denoting the transmission of forces between individual assemblies within a machine. We shall give examples from Babbage's Difference Engine 2 for which a complete set of notations was drawn in 1849, and compare them to a design of similar complexity specified in 1987 using the Inmos HDL.

  • History of Mathematics Seminar
25 November 2019
17:00
Karen Hunger Parshall
Abstract

American mathematics was experiencing growing pains in the 1920s. It had looked to Europe at least since the 1890s when many Americans had gone abroad to pursue their advanced mathematical studies.  It was anxious to assert itself on the international—that is, at least at this moment in time, European—mathematical scene. How, though, could the Americans change the European perception from one of apprentice/master to one of mathematical equals? How could Europe, especially Germany but to a lesser extent France, Italy, England, and elsewhere, come fully to sense the development of the mathematical United States?  If such changes could be effected at all, they would likely involve American and European mathematicians in active dialogue, working shoulder to shoulder in Europe and in the United States, and publishing side by side in journals on both sides of the Atlantic. This talk will explore one side of this “equation”: European mathematicians and their experiences in the United States in the 1920s.

  • History of Mathematics Seminar
12 November 2019
15:30
Tom Ritchie
Abstract

This session will discuss how Douglas Hartree and Arthur Porter used Meccano — a child’s toy and an engineer’s tool — to build an analogue computer, the Hartree Differential Analyser in 1934. It will explore the wider historical and social context in which this model computer was rooted, before providing an opportunity to engage with the experiential aspects of the 'Kent Machine,' a historically reproduced version of Hartree and Porter's original model, which is also made from Meccano.

The 'Kent Machine' sits at a unique intersection of historical research and educational engagement, providing an alternative way of teaching STEM subjects, via a historic hands-on method. The session builds on the work and ideas expressed in Otto Sibum's reconstruction of James Joule's 'Paddle Wheel' apparatus, inviting attendees to physically re-enact the mathematical processes of mechanical integration to see how this type of analogue computer functioned in reality. The session will provide an alternative context of the history of computing by exploring the tacit knowledge that is required to reproduce and demonstrate the machine, and how it sits at the intersection between amateur and professional science.

  • History of Mathematics Seminar
25 June 2019
17:00
Abstract

It is unnecessary to emphasize important place of algorithms in computer science. Many efficient and convenient algorithms are designed by borrowing or revising ancient mathematical algorithms and methods. For example, recursive method, exhaustive search method, greedy method, “divide and conquer” method, dynamic programming method, reiteration algorithm, circulation algorithm, among others.

 

From the perspective of the history of computer science, it is necessary to study the history of algorithms used in the computer computations. The history of algorithms for computer science is naturally regarded as a sub-object of history of mathematics. But historians of mathematics, at least those who study history of mathematics in China, have not realized it is important in the history of mathematics. Historians of Chinese mathematics paid little attention to these studies, mainly having not considered from this research angle. Relevant research is therefore insufficient in the field of history of mathematics.

 

The mechanization thought and algorithmization characteristic of Chinese traditional (and therefore, East Asian) mathematics, however, are coincident with that of computer science. Traditional Chinese algorithms, therefore, show their importance historical significance in computer science. It is necessary and important to survey traditional algorithms again from the point of views of computer science. It is also another angle for understanding traditional Chinese mathematics.

 

There are many things in the field that need to be researched. For example, when and how were these algorithms designed? What was their mathematical background? How were they applied in ancient mathematical context? How are their complexity and efficiency of ancient algorithms?

 

In the present paper, we will study the circulation structure in traditional Chinese mathematical algorithms. Circulation structures have great importance in the computer science. Most algorithms are designed by means of one or more circulation structures. Ancient Chinese mathematicians were familiar them with the circulation structures and good at their applications. They designed a lot of circulation structures to obtain their desirable results in mathematical computations. Their circulation structures of dozen ancient algorithms will be analyzed. They are selected from mathematical and astronomical treatises, and also one from the Yijing (Book of Changes), the oldest of the Chinese classics.

  • History of Mathematics Seminar
12 March 2019
14:00
Sepideh Alassi
Abstract

Jacob Bernoulli is known for his studies of the curves, infinitesimal math- ematics and statistics. However, before being a professor in mathematics, he taught experimental physics at the University of Basel. This explains his high interest in solving physical problems with newly developed Leibnizian calculus. In his scientific notebook, Meditationes, there are more than thirty notes about various mechanical problems for solving of which Bernoulli has applied Leibnizian calculus and has advanced this method along the way. A discussion with a craftsman brought Bernoulli’s attention to the problem of the strength of a beam early in his career and occupied his mind until his death. The craftsman’s narration based on his experience highlighted the flaws in Galilean-Leibnizian theory of the strength of a beam. This was the starting point of Bernoulli’s quest to mathematically find the profile of a bent beam (the Elastica Problem) and the physical laws governing it. He started a challenge to encourage other mathematicians of the time to study the problem, providing a hint hidden in an anagram. Although he published his solution of the Elastica Problem in 1694, that was not the end of the quest for him. Studying his unpublished notes in Meditationes reveals that over the last decade of his life, Bernoulli has reconsidered the problem. In my project, I demonstrate that he has found remarkable concepts such as mean tensile stress, and the notion of local stress-strain relation, etc.

  • History of Mathematics Seminar
18 February 2019
17:00
Ryan Hayward
Abstract

Seeking income during World War II, Piet Hein created the game now called Hex, marketing it through the Danish newspaper Politiken.  The game was popular but disappeared in 1943 when Hein fled Denmark.

The game re-appeared in 1948 when John Nash introduced it to Princeton's game theory group, and became popular again in 1957 after Martin Gardner's column --- "Concerning the game of Hex, which may be played on the tiles of the bathroom floor" --- appeared in Scientific American.

I will survey the early history of Hex, highlighting the war's influence on Hein's design and marketing, Hein's mysterious puzzle-maker, and Nash's fascination with Hex's theoretical properties.

  • History of Mathematics Seminar
4 December 2018
14:00
Abstract

The Oberwolfach Research Institute for Mathematics (Mathematisches Forschungsinstitut Oberwolfach/MFO) was founded in late 1944 by the Freiburg mathematician Wilhelm Süss (1895-1958) as the „National Institute for Mathematics“. In the 1950s and 1960s the MFO developed into an increasingly international conference centre.

The aim of my project is to analyse the history of the MFO as it institutionally changed from the National Institute for Mathematics with a wide, but standard range of responsibilities, to an international social infrastructure for research completely new in the framework of German academia. The project focusses on the evolvement of the institutional identity of the MFO between 1944 and the early 1960s, namely the development and importance of the MFO’s scientific programme (workshops, team work, Bourbaki) and the instruments of research employed (library, workshops) as well as the corresponding strategies to safeguard the MFO’s existence (for instance under the wings of the Max-Planck-Society). In particular, three aspects are key to the project, namely the analyses of the historical processes of (1) the development and shaping of the MFO’s workshop activities, (2) the (complex) institutional safeguarding of the MFO, and (3) the role the MFO played for the re-internationalisation of mathematics in Germany. Thus the project opens a window on topics of more general relevance in the history of science such as the complexity of science funding and the re-internationalisation of the sciences in the early years of the Federal Republic of Germany.

  • History of Mathematics Seminar
9 November 2018
15:00
Isobel Falconer
Abstract

In 1897 J.J. Thomson 'discovered' the electron. The previous year, he and his research student Ernest Rutherford (later to 'discover' theatomic nucleus), collaborated in experiments to work out why gases exposed to x-rays became conducting. 


This talk will discuss the very different mathematical educations of the two men, and the impact these differences had on their experimental investigation and the theory they arrived at. This theory formed the backdrop to Thomson's electron work the following year. 

  • History of Mathematics Seminar
27 July 2018
16:30
Anjing Qu
Abstract

In the 6th century, the phenomena of irregularity of the solar motion and parallax of the moon were found by Chinese astronomers. This made the calculation of solar eclipse much more complex than before. The strategy that Chinese calendar-makers dealt with was different from the geometrical model system like Greek astronomers taken as. What Chinese astronomers chose is a numerical algorithm system which was widely taken as a thinking mode to construct the theory of mathematical astronomy in old China. 

  • History of Mathematics Seminar
27 July 2018
16:00
Howard Emmens
Abstract

Relatively little is known about the correspondence of William Burnside, a pioneer of group theory in the UK. There are only a few dozen extant letters from or to him, though they are not without interest. However, one of the most noteworthy letters to or at least about him, in that it had a special mention in his obituary in the Proceedings of the Royal Society, has not been positively identified. It's not clear who it was from or when it was sent. We'll look at some possibilities.

  • History of Mathematics Seminar

Pages