Forthcoming events in this series


Mon, 25 Oct 2021

12:45 - 13:45
Virtual

Random Matrix Theory for the Black Hole Interior

Mark Mezei
(Simons Center for Geometry and Physics)
Further Information

NOTE UNUSUAL DAY AND TIME: Monday/12:45pm

Abstract

In recent years a fruitful interplay has been unfolding between quantum chaos and black holes. In the first part of the talk, I provide a sampler of these developments. Next, we study the fate of the black hole interior at late times in simple models of quantum gravity that have dual descriptions in terms of Random Matrix Theory. We find that the volume of the interior grows linearly at early times and then, due to non-perturbative effects, saturates at a time and towards a value that are exponentially large in the entropy of the black hole. This provides a confirmation of the complexity equals volume proposal of Susskind, since in chaotic systems complexity is also expected to exhibit the same behavior.

Tue, 19 Oct 2021

15:30 - 16:30
L6

TBA

Philip Cohen
(University of Oxford)
Further Information

POSTPONED TO A LATER DATE

Abstract

TBA

Tue, 12 Oct 2021

15:30 - 16:30
L6

Exact correlations in topological quantum chains

Nick Jones
(University of Oxford)
Abstract

Free fermion chains are particularly simple exactly solvable models. Despite this, typically one can find closed expressions for physically important correlators only in certain asymptotic limits. For a particular class of chains, I will show that we can apply Day's formula and Gorodetsky's formula for Toeplitz determinants with rational generating function. This leads to simple closed expressions for determinantal order parameters and the characteristic polynomial of the correlation matrix. The latter result allows us to prove that the ground state of the chain has an exact matrix-product state representation.

Tue, 15 Jun 2021

15:30 - 16:30
Virtual

Are random matrix models useful in biological systems?

Jon Pitchford
(University of York)
Abstract

For five decades, mathematicians have exploited the beauties of random matrix theory (RMT) in the hope of discovering principles which govern complex ecosystems. While RMT lies at the heart of the ideas, their translation toward biological reality requires some heavy lifting: dynamical systems theory, statistics, and large-scale computations are involved, and any predictions should be challenged with empirical data. This can become very awkward.

In addition to a morose journey through some of my personal failures to make RMT meet reality, I will try to sketch out some more constructive future perspectives. In particular, new methods for microbial community composition, dynamics and evolution might allow us to apply RMT ideas to the treatment of cystic fibrosis. In addition, in fisheries I will argue that sometimes the very absence of an empirical dataset can add to the practical value of models as tools to influence policy.

 

Thu, 10 Jun 2021

14:00 - 15:00
Virtual

53 Matrix Factorizations, generalized Cartan, and Random Matrix Theory

Alan Edelman
(MIT)
Further Information

This is jointly organised with Computational Mathematics and Applications Seminars.

Abstract

An insightful exercise might be to ask what is the most important idea in linear algebra. Our first answer would not be eigenvalues or linearity, it would be “matrix factorizations.”  We will discuss a blueprint to generate  53 inter-related matrix factorizations (times 2) most of which appear to be new. The underlying mathematics may be traced back to Cartan (1927), Harish-Chandra (1956), and Flensted-Jensen (1978) . We will discuss the interesting history. One anecdote is that Eugene Wigner (1968) discovered factorizations such as the svd in passing in a way that was buried and only eight authors have referenced that work. Ironically Wigner referenced Sigurður Helgason (1962) but Wigner did not recognize his results in Helgason's book. This work also extends upon and completes open problems posed by Mackey²&Tisseur (2003/2005).

Classical results of Random Matrix Theory concern exact formulas from the Hermite, Laguerre, Jacobi, and Circular distributions. Following an insight from Freeman Dyson (1970), Zirnbauer (1996) and Duenez (2004/5) linked some of these classical ensembles to Cartan's theory of Symmetric Spaces. One troubling fact is that symmetric spaces alone do not cover all of the Jacobi ensembles. We present a completed theory based on the generalized Cartan distribution. Furthermore, we show how the matrix factorization obtained by the generalized Cartan decomposition G=K₁AK₂ plays a crucial role in sampling algorithms and the derivation of the joint probability density of A.

Joint work with Sungwoo Jeong.

Tue, 01 Jun 2021

15:30 - 16:30
Virtual

Random Determinants and the Elastic Manifold

Gérard Ben Arous
(NYU)
Further Information

This is jointly organised with Oxford Discrete Mathematics and Probability Seminar.

Abstract

This is joint work with Paul Bourgade and Benjamin McKenna (Courant Institute, NYU).

The elastic manifold is a paradigmatic representative of the class of disordered elastic systems. These models describe random surfaces with rugged shapes resulting from a competition between random spatial impurities (preferring disordered configurations), on the one hand, and elastic self-interactions (preferring ordered configurations), on the other. The elastic manifold model is interesting because it displays a depinning phase transition and has a long history as a testing ground for new approaches in statistical physics of disordered media, for example for fixed dimension by Fisher (1986) using functional renormalization group methods, and in the high-dimensional limit by Mézard and Parisi (1992) using the replica method. 

We study the topology of the energy landscape of this model in the Mézard-Parisi setting, and compute the (annealed) topological complexity both of total critical points and of local minima. Our main result confirms the recent formulas by Fyodorov and Le Doussal (2020) and allows to identify the boundary between simple and glassy phases. The core argument relies on the analysis of the asymptotic behavior of large random determinants in the exponential scale.

Tue, 01 Jun 2021

14:00 - 15:00
Virtual

Invertibility of random square matrices

Konstantin Tikhomirov
(Georgia Institute of Technology)
Further Information

This is jointly organised with Oxford Discrete Mathematics and Probability Seminar.

Abstract

Consider an n by n random matrix A with i.i.d entries. In this talk, we discuss some results on the magnitude of the smallest singular value of A, and, in particular, the problem of estimating the singularity probability when the entries of A are discrete.

Tue, 25 May 2021

15:30 - 16:30

Moments of moments of random matrices and Gaussian multiplicative chaos

Mo Dick Wong
(University of Oxford)
Abstract

There has been a lot of interest in recent years in understanding the multifractality of characteristic polynomials of random matrices. In this talk I shall consider the study of moments of moments from the probabilistic perspective of Gaussian multiplicative chaos, and in particular establish exact asymptotics for the so-called critical-subcritical regime in the context of large Haar-distributed unitary matrices. This is based on a joint work with Jon Keating.

Tue, 18 May 2021

15:30 - 16:30

Integrability of random tilings with doubly periodic weights

Maurice Duits
(KTH Stockholm)
Abstract

In recent years important progress has been made in the understanding of random tilings of large Aztec diamonds with doubly periodic weights. Due to the double periodicity a new phase appears that  has not been observed in tiling models with uniform weights. One of the challenges is to find expressions of for the correlation functions that are amenable for asymptotic studies. In the case of the uniform weight the model is an example of a Schur process and, consequently,  such expressions for the correlation functions are known and well-studied in that case. In a joint work with Tomas Berggren we studied a more  general  integrable structure that includes certain doubly periodic weightings planar domains, such as the Aztec diamond.  A key feature is a dynamical system hiding in the background. In case of a periodic orbit, explicit double integrals for the correlation function can be found, paving the way for an asymptotic study using saddle point methods.

Tue, 11 May 2021

15:30 - 16:30
Virtual

How many stable equilibria will a large complex system have?

Boris Khoruzhenko
(Queen Mary University London)
Further Information

Meeting links will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

In 1972 Robert May argued that (generic) complex systems become unstable to small displacements from equilibria as the system complexity increases. His analytical model and outlook was linear. I will talk about a “minimal” non-linear extension of May’s model – a nonlinear autonomous system of N ≫ 1 degrees of freedom randomly coupled by both relaxational (’gradient’) and non-relaxational (’solenoidal’) random interactions. With the increasing interaction strength such systems undergo an abrupt transition from a trivial phase portrait with a single stable equilibrium into a topologically non-trivial regime where equilibria are on average exponentially abundant, but typically all of them are unstable, unless the dynamics is purely gradient. When the interaction strength increases even further the stable equilibria eventually become on average exponentially abundant unless the interaction is purely solenoidal. One can investigate these transitions with the help of the Kac-Rice formula for counting zeros of random functions and theory of random matrices applied to the real elliptic ensemble with some of the mathematical problems remaining open. This talk is based on collaborative work with Gerard Ben Arous and Yan Fyodorov.

Tue, 04 May 2021

15:30 - 16:30
Virtual

On the iterative methods for corrupted linear systems

Liza Rebrova
(Lawrence Berkeley National Lab)
Abstract

A group of projection based approaches for solving large-scale linear systems is known for its speed and simplicity. For example, Kaczmarz algorithm iteratively projects the previous approximation x_k onto the solution spaces of the next equation in the system. An elegant proof of the exponential convergence of this method, using correct randomization of the process, was given in 2009 by Strohmer and Vershynin, and succeeded by many extensions and generalizations. I will discuss our newly developed variants of these methods that successfully avoid large and potentially adversarial corruptions in the linear system. I specifically focus on the random matrix and high-dimensional probability results that play a crucial role in proving convergence of such methods. Based on the joint work with Jamie Haddock, Deanna Needell, and Will Swartworth.

Tue, 27 Apr 2021

15:30 - 16:30
Virtual

The two-periodic Aztec diamond and matrix valued orthogonality

Arno Kuijlaars
(KU Leuven)
Further Information

Meeting links will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

I will discuss how  polynomials with a non-hermitian orthogonality on a contour in the complex plane arise in certain random tiling problems. In the case of periodic weightings the orthogonality is matrixvalued.

In work with Maurice Duits (KTH Stockholm) the Riemann-Hilbert problem for matrix valued orthogonal polynomials was used to obtain asymptotics for domino tilings of the two-periodic Aztec diamond. This model is remarkable since it gives rise to a gaseous phase, in addition to the more common solid and liquid phases.

Tue, 09 Mar 2021

15:30 - 16:30
Virtual

Territorial behaviour of buzzards and the 2D Coulomb gas

Gernot Akemann
(Universität Bielefeld)
Abstract

Non-Hermitian random matrices with complex eigenvalues represent a truly two-dimensional (2D) Coulomb gas at inverse temperature beta=2. Compared to their Hermitian counter-parts they enjoy an enlarged bulk and edge universality. As an application to ecology we model large scale data of the approximately 2D distribution of buzzard nests in the Teutoburger forest observed over a period of 20 y. These birds of prey show a highly territorial behaviour. Their occupied nests are monitored annually and we compare these data with a one-component 2D Coulomb gas of repelling charges as a function of beta. The nearest neighbour spacing distribution of the nests is well described by fitting to beta as an effective repulsion parameter, that lies between the universal predictions of Poisson (beta=0) and random matrix statistics (beta=2). Using a time moving average and comparing with next-to-nearest neighbours we examine the effect of a population increase on beta and correlation length.
 

Tue, 02 Mar 2021

15:30 - 16:30
Virtual

The stochastic Airy operator and an interesting eigenvalue process

Diane Holcomb
(KTH Stockholm)
Abstract
The Gaussian ensembles, originally introduced by Wigner may be generalized to an n-point ensemble called the beta-Hermite ensemble. As with the original ensembles we are interested in studying the local behavior of the eigenvalues. At the edges of the ensemble the rescaled eigenvalues converge to the Airy_beta process which for general beta is characterized as the eigenvalues of a certain random differential operator called the stochastic Airy operator (SAO). In this talk I will give a short introduction to the Stochastic Airy Operator and the proof of convergence of the eigenvalues, before introducing another interesting eigenvalue process. This process can be characterized as a limit of eigenvalues of minors of the tridiagonal matrix model associated to the beta-Hermite ensemble as well as the process formed by the eigenvalues of the SAO under a restriction of the domain. This is joint work with Angelica Gonzalez.
Tue, 23 Feb 2021

15:30 - 16:30
Virtual

A new approach to the characteristic polynomial of a random unitary matrix

Yacine Barhoumi
(Ruhr-Universität Bochum)
Abstract

Since the seminal work of Keating and Snaith, the characteristic polynomial of a random (Haar-distributed) unitary matrix has seen several of its functional studied in relation with the probabilistic study of the Riemann Zeta function. We will recall the history of the topic starting with the Montgommery-Dyson correspondance and will revisit the last twenty years of computations of integer moments of some functionals, with a particular focus on the mid-secular coefficients recently studied by Najnudel-PaquetteSimm. The new method here introduced will be compared with one of the classical ways to deal with such functionals, the Conrey-Farmer-Keating-Rubinstein-Snaith (CFKRS) formula.

Tue, 16 Feb 2021

15:30 - 16:30
Virtual

Critically stable network economies

Jose Moran
(University of Oxford)
Abstract

Will a large economy be stable? In this talk, I will present a model for a network economy where firms' productions are interdependent, and study the conditions under which such input-output networks admit a competitive economic equilibrium, where markets clear and profits are zero. Insights from random matrix theory allow to understand some of the emergent properties of this equilibrium and to provide a classification for the different types of crises it can be subject to. After this, I will endow the model with dynamics, and present results with strong links to generalised Lotka-Volterra models in theoretical ecology, where inter-species interactions are modelled with random matrices and where the system naturally self-organises into a critical state. In both cases, the stationary points must consist of positive species populations/prices/outputs. Building on these ideas, I will show the key concepts behind an economic agent-based model that can exhibit convergence to equilibrium, limit cycles and chaotic dynamics, as well as a phase of spontaneous crises whose origin can be understood using "semi-linear" dynamics.

Tue, 09 Feb 2021

15:30 - 16:30
Virtual

Random quantum circuits and many-body dynamics

Adam Nahum
(University of Oxford)
Abstract

A quantum circuit defines a discrete-time evolution for a set of quantum spins/qubits, via a sequence of unitary 'gates’ coupling nearby spins. I will describe how random quantum circuits, where each gate is a random unitary matrix, serve as minimal models for various universal features of many-body dynamics. These include the dynamical generation of entanglement between distant spatial regions, and the quantum "butterfly effect". I will give a very schematic overview of mappings that relate averages in random circuits to the classical statistical mechanics of random paths. Time permitting, I will describe a new phase transition in the dynamics of a many-body wavefunction, due to repeated measurements by an external observer.

Tue, 02 Feb 2021

15:30 - 16:30
Virtual

Universal spectra of random channels and random Lindblad operators

Karol Życzkowski
(Jagiellonian University)
Abstract

We analyze spectral properties of generic quantum operations, which describe open systems under assumption of a strong decoherence and a strong coupling with an environment. In the case of discrete maps the spectrum of a quantum stochastic map displays a universal behaviour: it contains the leading eigenvalue \lambda_1 = 1, while all other eigenvalues are restricted to the disk of radius R<1. Similar properties are exhibited by spectra of their classical counterparts - random stochastic matrices. In the case of a generic dynamics in continuous time, we introduce an ensemble of random Lindblad operators, which generate Markov evolution in the space of density matrices of a fixed size. Universal spectral features of such operators, including the lemon-like shape of the spectrum in the complex plane, are explained with a non-hermitian random matrix model. The structure of the spectrum determines the transient behaviour of the quantum system and the convergence of the dynamics towards the generically unique invariant state. The quantum-to-classical transition for this model is also studied and the spectra of random Kolmogorov operators are investigated.

Tue, 26 Jan 2021

15:30 - 16:30
Virtual

Secular coefficients and the holomorphic multiplicative chaos

Joseph Najnudel
(University of Bristol)
Abstract

We study the coefficients of the characteristic polynomial (also called secular coefficients) of random unitary matrices drawn from the Circular Beta Ensemble (i.e. the joint probability density of the eigenvalues is proportional to the product of the power beta of the mutual distances between the points). We study the behavior of the secular coefficients when the degree of the coefficient and the dimension of the matrix tend to infinity. The order of magnitude of this coefficient depends on the value of the parameter beta, in particular, for beta = 2, we show that the middle coefficient of the characteristic polynomial of the Circular Unitary Ensemble converges to zero in probability when the dimension goes to infinity, which solves an open problem of Diaconis and Gamburd. We also find a limiting distribution for some renormalized coefficients in the case where beta > 4. In order to prove our results, we introduce a holomorphic version of the Gaussian Multiplicative Chaos, and we also make a connection with random permutations following the Ewens measure.

Tue, 19 Jan 2021

15:30 - 16:30
Virtual

Universality for random band matrices

Tatyana Shcherbina
(University of Wisconsin-Madison)
Further Information

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

Random band matrices (RBM) are natural intermediate models to study eigenvalue statistics and quantum propagation in disordered systems, since they interpolate between mean-field type Wigner matrices and random Schrodinger operators. In particular, RBM can be used to model the Anderson metal-insulator phase transition (crossover) even in 1d. In this talk we will discuss some recent progress in application of the supersymmetric method (SUSY) and transfer matrix approach to the analysis of local spectral characteristics of some specific types of 1d RBM.

Tue, 01 Dec 2020

15:30 - 16:30
Virtual

Maxima of a random model of the Riemann zeta function on longer intervals (and branching random walks)

Lisa Hartung
(Johannes Gutenberg University Mainz)
Abstract

We study the maximum of a random model for the Riemann zeta function (on the critical line  at height T) on the interval $[-(\log T)^\theta,(\log T)^\theta)$, where $ \theta =  (\log \log T)^{-a}$, with $0<a<1$.  We obtain the leading order as well as the logarithmic correction of the maximum. 

As it turns out a good toy model is a collection of independent BRW’s, where the number of independent copies depends on $\theta$. In this talk I will try to motivate our results by mainly focusing on this toy model. The talk is based on joint work in progress with L.-P. Arguin and G. Dubach.

Tue, 24 Nov 2020

15:30 - 16:30
Virtual

Asymptotics for averages over classical orthogonal ensembles

Tom Claeys
(Universite catholique de louvain)
Further Information

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

Averages of multiplicative eigenvalue statistics of Haar distributed unitary matrices are Toeplitz determinants, and asymptotics for these determinants are now well understood for large classes of symbols, including symbols with gaps and (merging) Fisher-Hartwig singularities. Similar averages for Haar distributed orthogonal matrices are Toeplitz+Hankel determinants. Some asymptotic results for these determinants are known, but not in the same generality as for Toeplitz determinants. I will explain how one can systematically deduce asymptotics for averages in the orthogonal group from those in the unitary group, using a transformation formula and asymptotics for certain orthogonal polynomials on the unit circle, and I will show that this procedure leads to asymptotic results for symbols with gaps or (merging) Fisher-Hartwig singularities. The talk will be based on joint work with Gabriel Glesner, Alexander Minakov and Meng Yang.

Tue, 17 Nov 2020

15:30 - 16:30
Virtual

Zeros, moments and derivatives

Nina Snaith
(University of Bristol)
Further Information

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

For 20 years we have known that average values of characteristic polynomials of random unitary matrices provide a good model for moments of the Riemann zeta function.  Now we consider moments of the logarithmic derivative of characteristic polynomials, calculations which are motivated by questions on the distribution of zeros of the derivative of the Riemann zeta function.  Joint work with Emilia Alvarez. 

Tue, 10 Nov 2020

15:30 - 16:30
Virtual

On the joint moments of characteristic polynomials of random unitary matrices

Theo Assiotis
(University of Edinburgh)
Further Information

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

I will talk about the joint moments of characteristic polynomials of random unitary matrices and their derivatives. In joint work with Jon Keating and Jon Warren we establish the asymptotics of these quantities for general real values of the exponents as the size N of the matrix goes to infinity. This proves a conjecture of Hughes from 2001. In subsequent joint work with Benjamin Bedert, Mustafa Alper Gunes and Arun Soor we focus on the leading order coefficient in the asymptotics, we connect this to Painleve equations for general values of the exponents and obtain explicit expressions corresponding to the so-called classical solutions of these equations.

Tue, 03 Nov 2020

15:30 - 16:30
Virtual

A threefold way to integrable probabilistic models

Thomas Bothner
(University of Bristol)
Further Information

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

This talk is intended for a broad math and physics audience in particular including students. It will focus on the speaker’s recent contributions to the analysis of the real Ginibre ensemble consisting of square real matrices whose entries are i.i.d. standard normal random variables. In sharp contrast to the complex and quaternion Ginibre ensemble, real eigenvalues in the real Ginibre ensemble attain positive likelihood. In turn, the spectral radius of a real Ginibre matrix follows a different limiting law for purely real eigenvalues than for non-real ones. We will show that the limiting distribution of the largest real eigenvalue admits a closed form expression in terms of a distinguished solution to an inverse scattering problem for the Zakharov-Shabat system. This system is directly related to several of the most interesting nonlinear evolution equations in 1 + 1 dimensions which are solvable by the inverse scattering method. The results of this talk are based on our joint work with Jinho Baik (arXiv:1808.02419 and arXiv:2008.01694)