Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

 

Past events in this series


Tue, 17 Feb 2026
16:00
L6

Graph and Chaos Theories Combined to Address Scrambling of Quantum Information (with Arkady Kurnosov and Sven Gnutzmann)

Uzi Smilansky
Abstract

Given a quantum Hamiltonian, represented as an $N \times N$ Hermitian matrix $H$, we derive an expression for the largest Lyapunov exponent of the classical trajectories in the phase space appropriate for the dynamics induced by $H$. To this end we associate to $H$ a graph with $N$ vertices and derive a quantum map on functions defined on the directed edges of the graph. Using the semiclassical approach in the reverse direction we obtain the corresponding classical evolution (Liouvillian) operator. Using ergodic theory methods (Sinai, Ruelle, Bowen, Pollicott\ldots) we obtain closed expressions for the Lyapunov exponent, as well as for its variance. Applications for random matrix models will be presented.

Tue, 24 Feb 2026
16:00
L6

Random Matrices and Free Cumulants

Roland Speicher
Abstract

The asymptotic large N limit of random matrices often transforms classical concepts (independence, cumulants, partitions of sets) into their free counter-parts (free independence, free cumulants, non-crossing partitions) and the limit of random matrices gives rise to interesting operator algebras. I will explain these relations, with a particular emphasis on the effect of non-linear functions on the entries of random matrices

Tue, 03 Mar 2026
16:00
L6

The distribution of the Riemann zeta-function at its relative extrema

Stephen Lester
Abstract
On the critical line, the modulus of Riemann zeta-function has exactly one relative maximum between consecutive zeros under the Riemann hypothesis. In this talk I will discuss the distribution of values of the Riemann zeta-function at these relative maxima and give an application to counting the number of solutions  $T \le t \le 2T$ to the equation $|\zeta(\tfrac12+it)|=a$, where $a>0$ is a real number. This is joint work with Micah Milinovich.