Forthcoming events in this series


Wed, 16 Oct 2024
11:00
L4

Large Values and Moments of the Riemann Zeta Function

Louis-Pierre Arguin
(Mathematical Institute)
Abstract

I will explain the recent techniques developed with co-authors to obtain fine estimates about the large values of the Riemann zeta functions on the critical line. An emphasis will be put on the ideas originating from statistical mechanics and large deviations that may be of general interest for a stochastic analysis audience. No number theory knowledge will be assumed!

Tue, 11 Jun 2024
11:00
L5

Renormalised Amperean area for 2D Higgs-Yang-Mills Field

Dr Isao Sauzedde
(University of Warwick)
Abstract

The objective of the talk is to present elements of Euclidean Quantum Field Theory and of the Symanzik's polymer representation for a model which includes an interaction with a magnetic field. We will explain how the problem of constructing such an EQFT can be translated into the problem of renormalising the Amperean area of a planar Brownian motion, an object that we will introduce during the talk. No prerequisite knowledge of the topic is expected.

Based on http://perso.ens-lyon.fr/isao.sauzedde/square_field3_3.pdf 

Tue, 04 Jun 2024
11:00
L5

Random Fourier Signature Features.

Csaba Toth
(Mathematical Institute)
Abstract

The signature kernel is one of the most powerful measures of similarity for sequences of arbitrary length accompanied with attractive theoretical guarantees from stochastic analysis. Previous algorithms to compute the signature kernel scale quadratically in terms of the length and the number of the sequences. To mitigate this severe computational bottleneck, we develop a random Fourier feature-based acceleration of the signature kernel acting on the inherently non-Euclidean domain of sequences. We show uniform approximation guarantees for the proposed unbiased estimator of the signature kernel, while keeping its computation linear in the sequence length and number. In addition, combined with recent advances on tensor projections, we derive two even more scalable time series features with favourable concentration properties and computational complexity both in time and memory. Our empirical results show that the reduction in computational cost comes at a negligible price in terms of accuracy on moderate-sized datasets, and it enables one to scale to large datasets up to a million time series.

Please click here to read the full paper.

Tue, 28 May 2024
11:00
L5

Stochastic quantization associated with the ${¥rm{exp}(¥Phi)_{2}$-quantum field model driven by the space-time white noise

Hiroshi Kawabi
(Keio University)
Abstract

We consider a quantum field model with exponential interactions on the two-dimensional torus,  which is called the ${¥rm{exp}(¥Phi)_{2}$-quantum field model or Hoegh-Krohn’s model. In this talk, we discuss the stochastic quantization of this model. Combining key properties of Gaussian multiplicative chaos with a method for singular SPDEs, we construct a unique time-global solution to the corresponding parabolic stochastic quantization equation in the full $L_{1}$-regime $¥vert ¥alpha ¥vert<{¥sqrt{8¥pi}}$ of the charge parameter $¥alpha$. We also identify the solution with an infinite dimensional diffusion process constructed by the Dirichlet form approach. 

The main part of this talk is based on joint work with Masato Hoshino (Osaka University) and  Seiichiro Kusuoka (Kyoto University), and the full paper can be found on https://link.springer.com/article/10.1007/s00440-022-01126-z

Tue, 21 May 2024
11:00
L5

Free probability, path developments and signature kernels as universal scaling limits

William Turner
(Imperial College, London)
Abstract

Scaling limits of random developments of a path into a matrix Lie Group have recently been used to construct signature-based kernels on path space, while mitigating some of the dimensionality challenges that come with using signatures directly. General linear group developments have been shown to be connected to the ordinary signature kernel (Muça Cirone et al.), while unitary developments have been used to construct a path characteristic function distance (Lou et al.). By leveraging the tools of random matrix theory and free probability theory, we are able to provide a unified treatment of the limits in both settings under general assumptions on the vector fields. For unitary developments, we show that the limiting kernel is given by the contraction of a signature against the monomials of freely independent semicircular random variables. Using the Schwinger-Dyson equations, we show that this kernel can be obtained by solving a novel quadratic functional equation. 

This is joint work with Thomas Cass.

Tue, 14 May 2024
11:00
L5

A graph discretized approximation of diffusions with drift and killing on a complete Riemannian manifold

Hiroshi Kawabi
(Keio University)
Abstract

In this talk, we present a graph discretized approximation scheme for diffusions with drift and killing on a complete Riemannian manifold M. More precisely, for a given Schrödinger operator with drift on M having the form A = Δ b + V , we introduce a family of discrete time random walks in the  ow generated by the drift b with killing on a sequence of proximity graphs, which are constructed by partitions cutting M into small pieces. As a main result, we prove that the drifted Schrodinger semigroup {e—tA}t≥0 is approximated by discrete semigroups generated by the family of random walks with a suitable scale change. This result gives a  nite dimensional summation approximation of a Feynman-Kac type functional integral over M. Furthermore, when M is compact, we also obtain a quantitative error estimate of the convergence.
This talk is based on a joint work with Satoshi Ishiwata (Yamagata University), and the full paper can be found on https://doi.org/10.1007/s00208-024-02809-9.

Tue, 07 May 2024
11:00
L5

Transportation-cost inequalities for nonlinear Gaussian functionals

Ioannis Gasteratos
(Imperial College, London)
Abstract

In this talk, we study concentration properties for laws of non-linear Gaussian functionals on metric spaces. Our focus lies on measures with non-Gaussian tail behaviour which are beyond the reach of Talagrand’s classical Transportation-Cost Inequalities (TCIs). Motivated by solutions of Rough Differential Equations and relying on a suitable contraction principle, we prove generalised TCIs for functionals that arise in the theory of regularity structures and, in particular, in the cases of rough volatility and the two-dimensional Parabolic Anderson Model. Our work also extends existing results on TCIs for diffusions driven by Gaussian processes.

Tue, 30 Apr 2024
11:00
L5

A priori bounds for subcritical fractional $\phi^4$ on $T^3$

Salvador Cesar Esquivel Calzada
(University of Münster)
Abstract

We study the stochastic quantisation for the fractional $\varphi^4$ theory. The model has been studied by Brydges, Mitter and Scopola in 2003 as a natural extension of $\phi^4$ theories to fractional sub-critical dimensions. The stochastic quantisation equation is given by the (formal) SPDE 

\[

(\partial_t + (-\Delta)^{s}) \varphi = - \lambda \varphi^3 + \xi\]

where $\xi$ is a space-time white noise over the three dimensional torus. The equation is sub-critical for $s > \frac{3}{4}$.

 

We derive a priori estimates in the full sub-critical regime $s>\frac{3}{4}$. These estimates rule out explosion in finite time and they imply the existence of an invariant measure with a standard Krylov-Bogoliubov argument. 

Our proof is based on the strategy developed for the parabolic case $s=1$ in [Chandra, Moinat, Weber, ARMA 2023]. In order to implement this strategy here, a new Schauder estimate for the fractional heat operator is developed. Additionally, several algebraic arguments from [Chandra, Moinat, Weber, ARMA 2023] are streamlined significantly. 

 

This is joint work with Hendrik Weber (Münster). 

Tue, 05 Mar 2024
11:00
Lecture room 5

Level lines of the massive planar Gaussian free field

Léonie Papon
(University of Durham)
Abstract

The massive planar Gaussian free field (GFF) is a random distribution defined on a subset of the complex plane. As a random distribution, this field a priori does not have well-defined level lines. In this talk, we give a meaning to this concept by constructing a coupling between a massive GFF and a random collection of loops, called massive CLE_4, in which the loops can naturally be interpreted as the level lines of the field. This coupling is constructed by appropriately reweighting the law of the standard GFF-CLE_4 coupling and this construction can be seen as a conditional version of the path-integral formulation of the massive GFF. We then relate massive CLE_4 to a massive version of the Brownian loop soup. This provides a more direct construction of massive CLE_4 and proves a conjecture of Camia.

Tue, 27 Feb 2024
11:00
L5

Deep Transfer Learning for Adaptive Model Predictive Control

Harrison Waldon
(Oxford Man Institute)
Abstract

This paper presents the (Adaptive) Iterative Linear Quadratic Regulator Deep Galerkin Method (AIR-DGM), a novel approach for solving optimal control (OC) problems in dynamic and uncertain environments. Traditional OC methods face challenges in scalability and adaptability due to the curse-of-dimensionality and reliance on accurate models. Model Predictive Control (MPC) addresses these issues but is limited to open-loop controls. With (A)ILQR-DGM, we combine deep learning with OC to compute closed-loop control policies that adapt to changing dynamics. Our methodology is split into two phases; offline and online. In the offline phase, ILQR-DGM computes globally optimal control by minimizing a variational formulation of the Hamilton-Jacobi-Bellman (HJB) equation. To improve performance over DGM (Sirignano & Spiliopoulos, 2018), ILQR-DGM uses the ILQR method (Todorov & Li, 2005) to initialize the value function and policy networks. In the online phase, AIR-DGM solves continuously updated OC problems based on noisy observations of the environment. We provide results based on HJB stability theory to show that AIR-DGM leverages Transfer Learning (TL) to adapt the optimal policy. We test (A)ILQR-DGM in various setups and demonstrate its superior performance over traditional methods, especially in scenarios with misspecified priors and changing dynamics.

Tue, 20 Feb 2024
11:00
Lecture room 5

The flow equation approach to singular SPDEs.

Massimiliano Gubinelli
(Mathematical Institute)
Abstract

I will give an overview of a recent method introduced by P. Duch to solve some subcritical singular SPDEs, in particular the stochastic quantisation equation for scalar fields. 

Tue, 30 Jan 2024
11:00
Lecture room 5

On two Formulations of McKean--Vlasov Control with Killing

Philipp Jettkant
Abstract

We study a McKean–Vlasov control problem with killing and common noise. The particles in this control model live on the real line and are killed at a positive intensity whenever they are in the negative half-line. Accordingly, the interaction between particles occurs through the subprobability distribution of the living particles. We establish the existence of an optimal semiclosed-loop control that only depends on the particles’ location and not their cumulative intensity. This problem cannot be addressed through classical mimicking arguments, because the particles’ subprobability distribution cannot be reconstructed from their location alone. Instead, we represent optimal controls in terms of the solutions to semilinear BSPDEs and show those solutions do not depend on the intensity variable.

Tue, 23 Jan 2024
11:00
L5

Wilson-Ito diffusions

Massimiliano Gubinelli
(Mathematical Institute)
Abstract

In a recent preprint, together with Bailleul and Chevyrev we introduced a class of random fields which try to model the basic properties of quantum fields. I will try to explain the basic ideas and some of the many open problems.

To read the preprint, please click here.

Tue, 16 Jan 2024
11:00
Lecture room 5

Random surfaces and higher algebra (Part II)

Darrick Lee
Abstract

A representation on the space of paths is a map which is compatible with the concatenation operation of paths, such as the path signature and Cartan development (or equivalently, parallel transport), and has been used to define characteristic functions for the law of stochastic processes. In this talk, we consider representations of surfaces which are compatible with the two distinct algebraic operations on surfaces: horizontal and vertical concatenation. To build these representations, we use the notion of higher parallel transport, which was first introduced to develop higher gauge theories. We will not assume any background in geometry or category theory. This is a continuation of the previous talk based on a recent preprint (https://arxiv.org/abs/2311.08366) with Harald Oberhauser.

Tue, 28 Nov 2023
11:00
Lecture Room 4

Random surfaces and higher algebra

Darrick Lee
(Mathematical Institute)
Abstract

A representation on the space of paths is a map which is compatible with the concatenation operation of paths, such as the path signature and Cartan development (or equivalently, parallel transport), and has been used to define characteristic functions for the law of stochastic processes. In this talk, we consider representations of surfaces which are compatible with the two distinct algebraic operations on surfaces: horizontal and vertical concatenation. To build these representations, we use the notion of higher parallel transport, which was first introduced to develop higher gauge theories. We will not assume any background in geometry or category theory. Based on a preprint (https://arxiv.org/abs/2311.08366) with Harald Oberhauser.

 

Tue, 21 Nov 2023
11:00
Lecture Room 4

Periodic space-time homogenization of the ϕ 4/2 -equation

Harprit Singh
((Imperial College, London))
Abstract

We consider the homogenisation problem for the ϕ4/2 equation on the torus T2 , i.e. the behaviour as ϵ → 0 of the solutions to the equations suggestively written

tuϵ − ∇ · A(x/ϵ, t/ϵ2 )∇uϵ = −u3ϵ + ξ

where ξ denotes space-time white noise and A : T 2 × R is uniformly elliptic, periodic and H¨older continuous. Based on joint work with M. Hairer

Tue, 14 Nov 2023
11:00
Lecture Room 4

DPhil Presentations

Sarah-Jean Meyer, Satoshi Hayakawa
(Mathematical Institute (University of Oxford))
Abstract

As part of the internal seminar schedule for Stochastic Analysis for this coming term, DPhil students have been invited to present on their works to date. Student talks are 20 minutes, which includes question and answer time. 

 

Students presenting are:

Sara-Jean Meyer, supervisor Massimiliano Gubinelli

Satoshi Hayakawa, supervisor Harald Oberhauser 

Tue, 07 Nov 2023
11:00
Lecture Room 4, Mathematical Institute

Rough super Brownian motion and its properties

Ruhong Jin
(Mathematical Insitute, Oxford)
Abstract

Following Rosati and Perkowski’s work on constructing the first version of a rough super Brownian motion, we generalize the rough super Brownian motion to the case when the branching mechanism has infinite variance. In both case, we can prove the compact support properties and the exponential persistence.

Tue, 31 Oct 2023
11:00
Lecture Room 4, Mathematical Institute

Asymptotic behavior of simple random walk on uniform spanning tree and loop-erased random walk.

Satomi Watanabe
(Kyoto University)
Abstract

Random walks on random graphs are associated with diffusion in disordered media. In this talk, the graphs of interest are uniform spanning tree (UST) and loop-erased random walk (LERW). First I will demonstrate some asymptotic behavior of the simple random walk on the three-dimensional UST. Next I will discuss annealed transition probability of the simple random walk on high-dimensional LERWs.

 

Tue, 24 Oct 2023
11:00
Lecture Room 4, Mathematical Institute

DPhil Presentations

Akshay Hegde, Julius Villar, Csaba Toth
(Mathematical Institute (University of Oxford))
Abstract

As part of the internal seminar schedule for Stochastic Analysis for this coming term, DPhil students have been invited to present on their works to date. Student talks are 20 minutes, which includes question and answer time. 

Students presenting are:

Akshay Hegde, supervisor Dmitry Beylaev

Julius Villar, supervisor Dmitry Beylaev

Csaba Toth, supervisor Harald Oberhauser 

Tue, 10 Oct 2023
11:00
Lecture Room 4, Mathematical Institute

DPhil Presentations

Adrian Martini, Fang Rui Lim, Thomas Groves, Sarah-Jean Meyer
Abstract

As part of the internal seminar schedule for Stochastic Analysis for this coming term, DPhil students have been invited to present on their works to date. Student talks are 20 minutes, which includes question and answer time. 

Students presenting are:

Adrian Martini, supervisor Alison Ethridge

Fang Rui Lim, supervisor Rama Cont

Thomas Groves, supervisor Dmitry Beylaev

Sarah-Jean Meyer, supervisor Massimiliano Gubinelli

Tue, 06 Jun 2023

11:00 - 12:00
L4

Level lines of smooth Gaussian fields

Akshay Hegde
Abstract

We talk about the Hausdorff measure of level sets of the fields, say length of level lines of a planar field. Given two coupled stationary fields  $f_1, f_2$ , we estimate the difference of Hausdorff measure of level sets in expectation, in terms of $C^2$-fluctuations of the field $F=f_1-f_2$. The main idea in the proof is to represent difference in volume as an integral of mean curvature using the divergence theorem. This approach is different from using the Kac-Rice type formula as the main tool in the analysis. 

Tue, 23 May 2023

11:00 - 12:00
L3

SDEs and rough paths on manifolds

Emilio Rossiferrucci
Abstract

I will begin by speaking about Ito SDEs on manifolds, how their meaning depends on the choice of a connection, and an example in which the Ito formulation is preferable to the more common Stratonovich one. SDEs are naturally generalised to the case of more irregular driving signals by rough differential equations (RDEs), i.e. equations driven by rough paths. I will explain how it is possible to give a coordinate-invariant definition of rough integral and rough differential equation on a manifold, even in the case of arbitrarily low regularity and when the rough path is not geometric, i.e. it does not satisfy a classical integration by parts rule. If time permits, I will end on a more recent algebraic result that makes it possible to canonically convert non-geometric RDEs to geometric ones.