Forthcoming events in this series


Tue, 28 Jan 2020
14:00
L6

Edge-sampling and modularity

Fiona Skerman
(Bristol University)
Abstract

Modularity is a function on graphs which is used in algorithms for community detection. For a given graph G, each partition of the vertices has a modularity score, with higher values indicating that the partition better captures community structure in $G$. The (max) modularity $q^\ast(G)$ of the graph $G$ is defined to be the maximum over all vertex partitions of the modularity score, and satisfies $0 \leq q^\ast(G) \leq 1$.

We analyse when community structure of an underlying graph can be determined from an observed subset of the graph. In a natural model where we suppose edges in an underlying graph $G$ appear with some probability in our observed graph $G'$ we describe how high a sampling probability we need to infer the community structure of the underlying graph.

Joint work with Colin McDiarmid.

Tue, 21 Jan 2020
14:00
L6

Extremal problems of long cycles in random graphs

Gal Kronenberg
(University of Oxford)
Abstract

In this talk, we consider the random version of some classical extremal problems in the context of long cycles. This type of problems can also be seen as random analogues of the Turán number of long cycles, established by Woodall in 1972.

For a graph $G$ on $n$ vertices and a graph $H$, denote by $\text{ex}(G,H)$ the maximal number of edges in an $H$-free subgraph of $G$. We consider a random graph $G\sim G(n,p)$ where $p>C/n$, and determine the asymptotic value of $\text{ex}(G,C_t)$, for every $A\log(n)< t< (1- \varepsilon)n$. The behaviour of $\text{ex}(G,C_t)$ can depend substantially on the parity of $t$. In particular, our results match the classical result of Woodall, and demonstrate the transference principle in the context of long cycles.

Using similar techniques, we also prove a robustness-type result, showing the likely existence of cycles of prescribed lengths in a random subgraph of a graph with a nearly optimal density (a nearly ''Woodall graph"). If time permits, we will present some connections to size-Ramsey numbers of long cycles.

Based on joint works with Michael Krivelevich and Adva Mond.

Tue, 03 Dec 2019

14:00 - 15:00
L6

Characterisation of quasirandom permutations by a pattern sum

Yanitsa Pehova
(University of Warwick)
Further Information

We say that a sequence $\{\Pi_i\}$ of permutations is quasirandom if, for each $k\geq 2$ and each $\sigma\in S_k$, the probability that a uniformly chosen $k$-set of entries of $\Pi_i$ induces $\sigma$ tends to $1/k!$ as $i$ tends to infinity. It is known that a much weaker condition already forces $\{\Pi_i\}$ to be quasirandom; namely, if the above property holds for all $\sigma\in S_4$. We further weaken this condition by exhibiting sets $S\subseteq S_4$, such that if a randomly chosen $k$-set of entries of $\Pi_i$ induces an element of $S$ with probability tending to $|S|/24$, then $\{\Pi_i\}$ is quasirandom. Moreover, we are able to completely characterise the sets $S$ with this property. In particular, there are exactly ten such sets, the smallest of which has cardinality eight. 
This is joint work with Timothy Chan, Daniel Kráľ, Jon Noel, Maryam Sharifzadeh and Jan Volec.

Tue, 26 Nov 2019

14:00 - 15:00
L6

Partial Associativity in Latin Squares

Jason Long
(University of Oxford)
Further Information

Latin squares arise from the multiplication tables of groups, but the converse is not true in general. Given a Latin square A, we can define a group operation giving A as its multiplication table only when A satisfies a suitable associativity constraint. This observation leads to a natural question concerning the '1%' version: if A is only partially associative, can we still obtain something resembling a group structure? I will talk about some joint work with Tim Gowers on this question.

Tue, 19 Nov 2019

14:00 - 15:00
L6

Phase transitions in random regular graphs

Endre Csóka
Further Information

We analyze the asymptotic relative size of the largest independent set of a random d-regular graph on n → ∞ vertices. This problem is very different depending on d because of a surprising phase transition. This is somewhat similar to finding the density of ``water'' above and below its freezing point. These phase transitions are related to algorithmic thresholds, mixing properties, counting, graph reconstruction, graph limits and other questions. We are still far from a complete understanding of all these questions. Our tools are partially coming from statistical physics. 

Tue, 12 Nov 2019

14:00 - 15:00
L6

Partition universality of G(n,p) for degenerate graphs

Julia Boettcher
(London School of Economics)
Further Information

The r-​colour size-​Ramsey number of a graph G is the minimum number of edges of a graph H such that any r-​colouring of the edges of H has a monochromatic G-​copy. Random graphs play an important role in the study of size-​Ramsey numbers. Using random graphs, we establish a new bound on the size-​Ramsey number of D-​degenerate graphs with bounded maximum degree.

In the talk I will summarise what is known about size-​Ramsey numbers, explain the connection to random graphs and their so-​called partition universality, and outline which methods we use in our proof.

Based on joint work with Peter Allen.  
 

Tue, 05 Nov 2019

14:00 - 15:00
L6

Combinatorial discrepancy and a problem of J.E. Littlewood

Julian Sahasrabudhe
(University of Cambridge)
Further Information

Given a collection of subsets of a set X, the basic problem in combinatorial discrepancy theory is to find an assignment of 1,-1 to the elements of X so that the sums over each of the given sets is as small as possible. I will discuss how the sort of combinatorial reasoning used to think about problems in combinatorial discrepancy can be used to solve an old conjecture of J.E. Littlewood on the existence of ``flat Littlewood polynomials''.

This talk is based on joint work with Paul Balister, Bela Bollobas, Rob Morris and Marius Tiba.
 

Tue, 29 Oct 2019

14:00 - 15:00
L6

Covering random graphs by monochromatic subgraphs, and related results

Daniel Korandi
(University of Oxford)
Further Information

How many monochromatic paths, cycles or general trees does one need to cover all vertices of a given r-edge-colored graph G? Such questions go back to the 1960's and have been studied intensively in the past 50 years. In this talk, I will discuss what we know when G is the random graph G(n,p). The problem turns out to be related to the following question of Erdős, Hajnal and Tuza: What is the largest possible cover number of an r-uniform hypergraph where any k edges have a cover of size l.

The results I mention give new bounds for these problems, and answer some questions by Bal and DeBiasio, and others. The talk is based on collaborations with Bucić, Mousset, Nenadov, Škorić and Sudakov.

Tue, 22 Oct 2019

14:00 - 15:00
L6

Homomorphisms from the torus

Matthew Jenssen
(Oxford)
Further Information

We present a detailed probabilistic and structural analysis of the set of weighted homomorphisms from the discrete torus Z_m^n, where m is even, to any fixed graph. Our main result establishes the "phase coexistence" phenomenon in a strong form: it shows that the corresponding probability distribution on such homomorphisms is close to a distribution defined constructively as a certain random perturbation of some "dominant phase". This has several consequences, including solutions (in a strong form) to conjectures of Engbers and Galvin and a conjecture of Kahn and Park. Special cases include sharp asymptotics for the number of independent sets and the number of proper q-colourings of Z_m^n (so in particular, the discrete hypercube). For the proof we develop a `Cluster Expansion Method', which we expect to have further applications, by combining machinery from statistical physics, entropy and graph containers. This is joint work with Peter Keevash.
 

 
Tue, 15 Oct 2019

14:00 - 15:00
L6

Approximately counting and sampling small witnesses using a colourful decision oracle

Kitty Meeks
(University of Glasgow)
Abstract

Decision problems – those in which the goal is to return an answer of “YES" or “NO" – are at the heart of the theory of computational complexity, and remain the most studied problems in the theoretical algorithms community. However, in many real-world applications it is not enough just to decide whether the problem under consideration admits a solution: we often want to find all solutions, or at least count (either exactly or approximately) their  total number. It is clear that finding or counting all solutions is at least as computationally difficult as deciding whether there exists a single solution, and  indeed in many cases it is strictly harder (assuming P is not equal NP) even to count approximately the number of solutions than it is to decide whether there exists at least one.


In this talk I will discuss a restricted family of problems, in which we are interested in solutions of a given size: for example, solutions could be copies of a specific k-vertex graph H in a large host graph G, or more generally k-vertex subgraphs of G that have some specified property (e.g. k-vertex subgraphs that are connected). In this setting, although exact counting is strictly harder than decision (assuming standard assumptions in parameterised complexity), the methods typically used to separate approximate counting from decision break down. Indeed, I will demonstrate a method that, subject to certain additional assumptions, allows us to transform an efficient decision algorithm for a problem of this form into an approximate counting algorithm with essentially the same running time.

This is joint work with John Lapinskas (Bristol) and Holger Dell (ITU Copenhagen).

Tue, 18 Jun 2019

14:30 - 15:30
L6

Enumerating graphs and other discrete structures by degree sequence

Anita Liebenau
Further Information

How many d-regular graphs are there on n vertices? What is the probability that G(n,p) has a specific given degree sequence? 

Asymptotic formulae for the first question are known when d=o(\sqrt(n)) and when d= \Omega(n). More generally, asymptotic formulae are known for 
the number of graphs with a given degree sequence, for a range of degree sequences that is wide enough to deduce asymptotic formulae for the second 
question for p =o(1/o(\sqrt(n))) and p = Theta(1).  

McKay and Wormald showed that the formulae for the sparse case and the 
dense case can be cast into a common form, and then conjectured in 1990 and 1997 that the same formulae should hold for the gap range. A particular consequence of both conjectures is that the degree sequence of the random graph G(n,p) can be approximated by a sequence of n independent 
binomial variables Bin(n − 1, p'). 

In 2017, Nick Wormald and I proved both conjectures. In this talk I will describe the problem and survey some of the earlier methods to showcase the differences to our new methods. I shall also report on enumeration results of other discrete structures, such as bipartite graphs and hypergraphs, that are obtained by adjusting our methods to those settings. 

Tue, 04 Jun 2019

14:30 - 15:30
L6

Non-concentration of the chromatic number of G(n, 1/2)

Annika Heckel
Further Information

A classic result of Shamir and Spencer states that for any function $p=p(n)$, the chromatic number of $G(n,p)$ is whp concentrated on a sequence of intervals of length about $\sqrt{n}$. For $p<n^{-\frac{1}{2} -\epsilon}$, much more is known: here, the chromatic number is concentrated on two consecutive values.

Until now, there have been no non-trivial cases where $\chi(G(n,p))$ is known not to be extremely narrowly concentrated. In 2004, Bollob\'as asked for any such examples, particularly in the case $p=\frac{1}{2}$, in a paper in the problem section of CPC. 

In this talk, we show that the chromatic number of $G(n, 1/2)$ is not whp concentrated on $n^{\frac{1}{4}-\epsilon}$ values

Tue, 21 May 2019

14:30 - 15:30

Intervals in the Hales-Jewett Theorem

Christoph Spiegel
Further Information

The Hales–Jewett Theorem states that any r–colouring of [m]^n contains a monochromatic combinatorial line if n is large enough. Shelah’s proof of the theorem implies that for m = 3 there always exists a monochromatic combinatorial line whose set of active coordinates is the union of at most r intervals. I will present some recent findings relating to this observation. This is joint work with Nina Kamcev.

Tue, 14 May 2019

14:30 - 15:30
L6

Graphs which are expanders both locally and globally

Michael Chapman
Further Information

Expander graphs play a key role in modern mathematics and computer science. Random d-regular graphs are good expanders. Recent developments in PCP theory require families of graphs that are expanders both globally and locally. The meaning of “globally" is the usual one of expansion in graphs, and locally means that for every vertex the subgraph induced by its neighbors is also an expander graph. These requirements are significantly harder to satisfy and no good random model for such (bounded degree) graphs is presently known. In this talk we discuss two new combinatorial constructions of such graphs. We also say something about the limitations of such constructions and provide an Alon-Bopanna type bound for the (global) spectral gap of such a graph. In addition we discuss other notions of high dimensional expansion that our constructions do and do not satisfy, such as coboundary expansion, geometric overlap and mixing of the edge-triangle-edge random walk. This is a joint work with Nati Linial and Yuval Peled.
 

Tue, 07 May 2019

14:30 - 15:30
L6

Around Brooks' theorem

Marthe Bonamy
Further Information

In this talk, we will discuss various results around Brooks' theorem: a graph has chromatic number at most its maximum degree, unless it is a clique or an odd cycle. We will consider stronger variants and local versions, as well as the structure of the solution space of all corresponding colorings.

Tue, 30 Apr 2019

14:30 - 15:30
L6

Erdős-Rothschild problem for five and six colours

Jozef Skokan
Further Information

Given positive integers n,r,k, the Erdős-Rothschild problem asks to determine the largest number of r-edge-colourings without monochromatic k-cliques a graph on n vertices can have. In the case of triangles, i.e. when k=3, the solution is known for r = 2,3,4. We investigate the problem for five and six colours.

Tue, 26 Feb 2019

14:30 - 15:30
L6

Graphons with minimum clique density

Maryam Sharifzadeh
Further Information

Among all graphs of given order and size, we determine the asymptotic structure of graphs which minimise the number of $r$-cliques, for each fixed $r$. In fact, this is achieved by characterising all graphons with given density which minimise the $K_r$-density. The case $r=3$ was proved in 2016 by Pikhurko and Razborov.

 

This is joint work with H. Liu, J. Kim, and O. Pikhurko.

Tue, 19 Feb 2019

14:30 - 15:30

The generalised Oberwolfach problem

Katherine Staden
Further Information

Recently, much progress has been made on the general problem of decomposing a dense (usually complete) graph into a given family of sparse graphs (e.g. Hamilton cycles or trees). I will present a new result of this type: that any quasirandom dense large graph in which all degrees are equal and even can be decomposed into any given collection of two-factors (2-regular spanning subgraphs). A special case of this result reproves the Oberwolfach problem for large graphs.

 

This is joint work with Peter Keevash.

Tue, 12 Feb 2019

14:30 - 15:30
L6

Asymptotic normality in random graphs with given vertex degrees.

Svante Janson
Abstract

We study random (simple) graphs with given vertex degrees, in the sparse case where the average degree is bounded. Assume also that the second moment of the vertex degree is bounded. The standard method then is to use the configuration model to construct a random multigraph and condition it on
being simple.

This works well for results of the type that something holds with high probability, or that something converges in probability, but it does not immediately apply to convergence in distribution, for example asymptotic normality. (Although this has been done by special arguments in a couple of cases, by Janson and Luczak and by Riordan.) A typical example is the recent result by Barbour and Röllin on asymptotic normality of the size of the giant component of the multigraph (in the supercritical case); it is an obvious conjecture that the same results hold for the random simple graph.

We discuss two new approaches to this, both based on old methods. Both apply to the size of the giant component, using rather minor special arguments.

One approach uses the method of moments to obtain joint convergence of the variable of interest together with the numbers of loops and multiple edges
in the  multigraph.

The other approach uses switchings to modify the multigraph and construct a simple graph. This simple random graph will not have a uniform distribution,
but almost, and this is good enough.

Tue, 29 Jan 2019

14:30 - 15:30
L6

Efficient sampling of random colorings

Guillem Perarnau
Abstract

A well-known conjecture in computer science and statistical physics is that Glauber dynamics on the set of k-colorings of a graph G on n vertices with maximum degree \Delta is rapidly mixing for k \ge \Delta+2. In 1999, Vigoda showed rapid mixing of flip dynamics with certain flip parameters on the set of proper k-colorings for k > (11/6)\Delta, implying rapid mixing for Glauber dynamics. In this paper, we obtain the first improvement beyond the (11/6)\Delta barrier for general graphs by showing rapid mixing for k > (11/6 - \eta)\Delta for some positive constant \eta. The key to our proof is combining path coupling with a new kind of metric that incorporates a count of the extremal configurations of the chain. Additionally, our results extend to list coloring, a widely studied generalization of coloring. Combined, these results answer two open questions from Frieze and Vigoda’s 2007 survey paper on Glauber dynamics for colorings. 


This is joint work with Michelle Delcourt and Luke Postle.

 
Tue, 22 Jan 2019

14:30 - 15:30
C6

Testing for an odd hole

Paul Seymour
Abstract

There was major progress on perfect graphs in the early 2000's: Chudnovsky, Robertson, Thomas and I proved the ``strong perfect graph theorem'' that a graph is perfect if and only if it has no odd hole or odd antihole; and Chudnovsky, Cornuejols, Liu, Vuscovic and I found a polynomial-time algorithm to test whether a graph has an odd hole or odd antihole, and thereby test if it is perfect. (A ``hole'' is an induced cycle of length at least four, and an ``antihole'' is a hole in the complement graph.)

What we couldn't do then was test whether a graph has an odd hole, and this has stayed open for the last fifteen years, despite some intensive effort. I am happy to report that in fact it can be done in poly-time (in time O(|G|^{12}) at the last count), and in this talk we explain how.

Joint work with Maria Chudnovsky, Alex Scott, and Sophie Spirkl.

Tue, 15 Jan 2019

14:30 - 15:30
C6

Two Erdos-Hajnal-type theorems in hypergraphs

Mykhaylo Tyomkyn
Abstract

The Erdos-Hajnal Theorem asserts that non-universal graphs, that is, graphs that do not contain an induced copy of some fixed graph H, have homogeneous sets of size significantly larger than one can generally expect to find in a graph. We obtain two results of this flavor in the setting of r-uniform hypergraphs.

1. A theorem of R\"odl asserts that if an n-vertex graph is non-universal then it contains an almost homogeneous set (i.e one with edge density either very close to 0 or 1) of size \Omega(n). We prove that if a 3-uniform hypergraph is non-universal then it contains an almost homogeneous set of size \Omega(log n). An example of R\"odl from 1986 shows that this bound is tight.

2. Let R_r(t) denote the size of the largest non-universal r-graph G so that neither G nor its complement contain a complete r-partite subgraph with parts of size t. We prove an Erd\H{o}s--Hajnal-type stepping-up lemma, showing how to transform a lower bound for R_r(t) into a lower bound for R_{r+1}(t). As an application of this lemma, we improve a bound of Conlon-Fox-Sudakov by showing that R_3(t) \geq t^{ct).

Joint work with M. Amir and A. Shapira

Tue, 20 Nov 2018
14:30
L6

On the rational Turán exponents conjecture

Dongyeap Kang
(KAIST)
Abstract

The extremal number ${\rm ex}(n,F)$ of a graph $F$ is the maximum number of edges in an $n$-vertex graph not containing $F$ as a subgraph. A real number $r \in [0,2]$ is realisable if there exists a graph $F$ with ${\rm ex}(n , F) = \Theta(n^r)$. Several decades ago, Erdős and Simonovits conjectured that every rational number in $[1,2]$ is realisable. Despite decades of effort, the only known realisable numbers are $0,1, \frac{7}{5}, 2$, and the numbers of the form $1+\frac{1}{m}$, $2-\frac{1}{m}$, $2-\frac{2}{m}$ for integers $m \geq 1$. In particular, it is not even known whether the set of all realisable numbers contains a single limit point other than two numbers $1$ and $2$.

We discuss some progress on the conjecture of Erdős and Simonovits. First, we show that $2 - \frac{a}{b}$ is realisable for any integers $a,b \geq 1$ with $b>a$ and $b \equiv \pm 1 ~({\rm mod}\:a)$. This includes all previously known ones, and gives infinitely many limit points $2-\frac{1}{m}$ in the set of all realisable numbers as a consequence. Secondly, we propose a conjecture on subdivisions of bipartite graphs. Apart from being interesting on its own, we show that, somewhat surprisingly, this subdivision conjecture in fact implies that every rational number between 1 and 2 is realisable.

This is joint work with Jaehoon Kim and Hong Liu.

Tue, 13 Nov 2018
14:30
L6

Intersection sizes of linear subspaces with the hypercube

Carla Groenland
(University of Oxford)
Abstract

We continue the study by Melo and Winter [arXiv:1712.01763, 2017] on the possible intersection sizes of a $k$-dimensional subspace with the vertices of the $n$-dimensional hypercube in Euclidean space. Melo and Winter conjectured that all intersection sizes larger than $2^{k-1}$ (the “large” sizes) are of the form $2^{k-1} + 2^i$. We show that this is almost true: the large intersection sizes are either of this form or of the form $35\cdot2^{k-6}$ . We also disprove a second conjecture of Melo and Winter by proving that a positive fraction of the “small” values is missing.