Past Junior Number Theory Seminar

E.g., 2019-12-06
E.g., 2019-12-06
E.g., 2019-12-06
2 December 2019
16:00
George Robinson
Abstract

L-functions have become a vital part of modern number theory over the past century, allowing comparisons between arithmetic objects with seemingly very different properties. In the first part of this talk, I will give an overview of where they arise, their properties, and the mathematics that has developed in order to understand them. In the second part, I will give a sketch of the beautiful result of Herbrand-Ribet concerning the arithmetic interpretations of certain special values of the Riemann zeta function, the prototypical example of an L-function.

  • Junior Number Theory Seminar
25 November 2019
16:00
Zoe Wang
Abstract

Let $[N] = \{1,..., N\}$ and let $A$ be a subset of $[N]$. A result of Sárközy in 1978 showed that if the difference set $A-A = \{ a - a’: a, a’ \in A\}$ does not contain any number which is one less than a prime, then $A = o(N)$. The quantitative upper bound on $A$ obtained from Sárközy’s proof has be improved subsequently by Lucier, and by Ruzsa and Sanders. In this talk, I will discuss my work on this problem. I will give a brief introduction of the iteration scheme and the Hardy-Littlewood method used in the known proofs, and our major arc estimate which leads to an improved bound.

  • Junior Number Theory Seminar
18 November 2019
16:00
Jared Duker Lichtman
Abstract

A subset of the integers larger than 1 is called $\textit{primitive}$ if no member divides another. Erdős proved in 1935 that the sum of $1/(n \log n)$ over $n$ in a primitive set $A$ is universally bounded for any choice of $A$. In 1988, he famously asked if this universal bound is attained by the set of prime numbers. In this talk we shall discuss some recent progress towards this conjecture and related results, drawing on ideas from analysis, probability, & combinatorics.

  • Junior Number Theory Seminar
11 November 2019
16:00
Jay Swar
Abstract

Given a prime p and an elliptic curve E (say over Q), one can associate a "mod p Galois representation" of the absolute Galois group of Q by considering the natural action on p-torsion points of E.

In 1972, Serre showed that if the endomorphism ring of E is "minimal", then there exists a prime P(E) such that for all p>P(E), the mod p Galois representation is surjective. This raised an immediate question (now known as Serre's uniformity conjecture) on whether P(E) can be bounded as E ranges over elliptic curves over Q with minimal endomorphism rings.

I'll sketch a proof of this result, the current status of the conjecture, and (time permitting) some extensions of this result (e.g. to abelian varieties with appropriately analogous endomorphism rings).

  • Junior Number Theory Seminar
4 November 2019
16:00
Esteban Gomezllata Marmolejo
Abstract

Arakelov geometry studies schemes X over ℤ, together with the Hermitian complex geometry of X(ℂ).
Most notably, it has been used to give a proof of Mordell's conjecture (Faltings's Theorem) by Paul Vojta; curves of genus greater than 1 have at most finitely many rational points.
In this talk, we'll introduce some of the ideas behind Arakelov theory, and show how many results in Arakelov theory are analogous—with additional structure—to classic results such as intersection theory and Riemann Roch.

  • Junior Number Theory Seminar
28 October 2019
16:00
Zhenhua Wu
Abstract

Given a morphism of schemes of characteristic p, we can construct a morphism from the exterior algebra of Kahler differentials to the cohomology of De Rham complex, which is an isomorphism when the original morphism is smooth.

  • Junior Number Theory Seminar
21 October 2019
16:00
Konstantinos Kartas
Abstract

The goal of the talk is to present a proof of the following statement:
Let (K,v) be an algebraic extension of (Q_p,v_p) whose completion is perfectoid. We show that K is relatively decidable to its tilt K^♭, i.e. if K^♭ is decidable in the language of valued fields, then so is K. 
In the first part [of the talk], I will try to cover the necessary background needed from model theory and the theory of perfectoid fields.

  • Junior Number Theory Seminar
10 June 2019
16:00
Jay Swar
Abstract

The principal ideal theorem (1930) guaranteed that any number field K would embed into a finite extension, called the Hilbert class field of K, in which every ideal of the original field became principal -- however the Hilbert class field itself will not necessarily have class number 1. The class field tower problem asked whether iteratively taking Hilbert class fields must stabilize after finitely many steps. In 1964, it was finally answered in the negative by Golod and Shafarevich who produced infinitely many examples and pioneered the framework that is still the most common setting for deciding when a number field will have an infinite class field tower.

In this talk, I will finish the proof of their cohomological result and thus fully justify how it settled the class field tower problem.

  • Junior Number Theory Seminar
3 June 2019
16:00
Jay Swar
Abstract

The principal ideal theorem (1930) ascertained that any number field K embeds into a finite extension, called the Hilbert class field of K, in which every ideal of the original field became principal -- however the Hilbert class field itself will not necessarily have class number 1. The class field tower problem asked whether iteratively taking Hilbert class fields must stabilize after finitely many steps. In 1964, it was finally answered in the negative by Golod and Shafarevich who produced infinitely many examples and pioneered the framework that is still the most common setting for deciding when a number field will have an infinite class field tower.

In this talk, I will sketch the proof of their cohomological result and explain how it settled the class field tower problem.

  • Junior Number Theory Seminar

Pages