Forthcoming events in this series


Tue, 04 Jul 2023
16:00
Lecture Theatre 2

LMS Hardy Lecture Tour 2023: Eva Miranda (UPC Barcelona) - Singular Hamiltonian and Reeb Dynamics: First steps

Eva Miranda
(UPC Barcelona)
Abstract

Floer theory, which mimics an infinite dimensional Morse approach to the study of critical points of smooth functions, appeared as an attempt to prove Arnold conjecture. The theory is more or less well understood in some compact cases.

Non-compact symplectic manifolds can sometimes be compactified as singular symplectic manifolds where the symplectic form "blows up" along a hypersurface in a controlled way (b^m-symplectic manifolds). In natural examples in Celestial mechanics such as the 3-body problem, these compactifications are given by regularization transformations à la Moser/Mc Gehee etc.

I will use the theory of b^m-symplectic/b^m-contact manifolds (introduced by Scott, Guillemin-Miranda Weitsman, and Miranda-Oms) as a guinea pig to propose ways to extend the study of Hamiltonian/Reeb Dynamics to singular symplectic/contact manifolds. This, in particular, yields new results for non-compact symplectic manifolds and for special (but, yet, meaningful) classes of Poisson manifolds.

Inspiration comes from several results extending the Weinstein conjecture to the context of b^m-contact manifolds and its connection to the study of escape orbits in Celestial mechanics and Fluid Dynamics. Those examples motivate a model for (singular) Floer homology.

I'll describe the motivating examples/results and some ideas to attack the general questions.

The Hardy Lectureship was founded in 1967 in memory of G.H. Hardy (LMS President 1926-1928 & 1939-1941). The Hardy Lectureship is a lecture tour of the UK by a mathematician with a high reputation in research.

Mon, 27 Jun 2022
16:15
St Catherine's

The Reddick Lecture 2022: The Benefits of Applied Mathematics in Product Development

Dr Uwe Beuscher, W.L. Gore & Associates, Inc.
Further Information

For more information, and to register your interest, please visit the Reddick Lecture web page

Abstract

Throughout a product development project, many decisions must be made. These include whether to start, stop, continue, or re-direct a project based on the learnings of the project team. Some of these decisions are related to the risk of achieving certain product performance attributes and they are often based on experimental observations in the laboratory or in field applications of early prototypes. Sometimes, these observations provide sufficient insight but often a significant uncertainty remains. Mathematical simulation can provide deeper insight into the mechanisms, may indicate limiting parameters and transport steps, and allows exploration of novel prototypes without actually making them. This talk will illustrate how Mathematics have been used to inform project development projects and their guiding decisions at WL Gore by describing examples from three very different applications.

Thu, 24 Jun 2021

17:00 - 18:00

Equal Opportunity Cities (this lecture is open to everyone)

Sandy Pentland
(MIT)
Further Information

Using data from four continents, we show that diversity of consumption and of diversity of social exposure are perhaps the single most powerful predictor of life outcomes such as increasing neighborhood GDP, increasing individual wealth, and promoting intergenerational mobility, even after controlling for variables such as population density, housing price, and geographic centrality. The effects of diversity in promoting opportunity are causal, and inequality in opportunity stems more from social norms that promote segregation than from physical segregation. Policies to promote more equal opportunities within cities seem practical.

You can register here. Everyone is welcome.

Fri, 18 Jun 2021

13:30 - 17:00

Groups and Geometry in the South East

Piotr Przytycki, Elia Fioravanti, Rylee Lyman
(McGill & Bonn & Rutgers-Newark)
Further Information

Tits Alternative in dimension 2

1:30-2:30PM

Piotr Przytycki (McGill)

A group G satisfies the Tits alternative if each of its finitely generated subgroups contains a non-abelian free group or is virtually solvable. I will sketch a proof of a theorem saying that if G acts geometrically on a simply connected nonpositively curved complex built of equilateral triangles, then it satisfies the Tits alternative. This is joint work with Damian Osajda.

Coarse-median preserving automorphisms

2:45-3:45PM

Elia Fioravanti (Bonn)

We study fixed subgroups of automorphisms of right-angled Artin and Coxeter groups. If Phi is an untwisted automorphism of a RAAG, or an arbitrary automorphism of a RACG, we prove that Fix(Phi) is finitely generated and undistorted. Up to replacing Phi with a power, the fixed subgroup is actually quasi-convex with respect to the standard word metric (which implies that it is separable and a virtual retract, by work of Haglund and Wise). Our techniques also apply to automorphisms of hyperbolic groups and to certain automorphisms of hierarchically hyperbolic groups. Based on arXiv:2101.04415.

Some new CAT(0) free-by-cyclic groups

4:00-5:00PM

Rylee Lyman (Rutgers-Newark)

I will construct several infinite families of polynomially-growing automorphisms of free groups whose mapping tori are CAT(0) free-by-cyclic groups. Such mapping tori are thick, and thus not relatively hyperbolic. These are the first families comprising infinitely many examples for each rank of the nonabelian free group; they contrast strongly with Gersten's example of a thick free-by-cyclic group which cannot be a subgroup of a CAT(0) group.

 

Thu, 01 Oct 2020

16:00 - 17:00
Virtual

Systems Thinking and Problem Solving: Value-based Approaches to Mathematical Innovation (Cancelled)

Professor R. Eddie Wilson
(University of Bristol)
Further Information

More information on the Reddick Lecture.

Abstract

This talk is a personal how-to (and how-not-to) manual for doing Maths with industry, or indeed with government. The Maths element is essential but lots of other skills and activities are equally necessary. Examples: problem elicitation; understanding the environmental constraints; power analysis; understanding world-views and aligning personal motivations; and finally, understanding the wider systems in which the Maths element will sit. These issues have been discussed for some time in the management science community, where their generic umbrella name is Problem Structuring Methods (PSMs).

Mon, 08 Jul 2019 09:00 -
Wed, 10 Jul 2019 17:00
L2

NetMob 2019

NetMob 2019
(University of Oxford and others)
Further Information

NetMob is the primary conference in the analysis of mobile phone datasets in social, urban, societal and industrial problems. Previous editions in Boston and Milano brought together more than 250 researchers, practitioners and decision-makers from more than 140 institutions and 30 countries.

The 2019 edition of NetMob will take place at the Mathematical Institute of Oxford University in a conference format similar to that of the previous editions: one track of short contributed talks, a simplified submission procedure, no proceedings (except for a book of abstracts), and the possibility to present recent results or results submitted elsewhere.

For more information and how to join click here

Wed, 26 Jun 2019
15:00
C3

Automata and algebraic structures

Bakh Khoussainor
(Auckland)
Further Information

LMS-NZMS Aitkin Lecture 2019
 

Abstract

Automatic structures are algebraic structures, such as graphs, groups
and partial orders, that can be presented by automata. By varying the 
classes of automata (e.g. finite automata, tree automata, omega-automata) 
one varies the classes of automatic structures. The class of all automatic 
structures is robust in the sense that it is closed under many natural
algebraic and model-theoretic operations.  
In this talk, we give formal definitions to 
automatic structures, motivate the study, present many examples, and
explain several fundamental theorems.  Some results in the area
are deeply connected  with algebra, additive combinatorics, set theory, 
and complexity theory. 
We then motivate and pose several important  unresolved questions in the
area.

Sun, 12 May 2019

13:00 - 14:00
L1

Matt Parker at the Oxford Maths Festival

Matt Parker
(Queen Mary University London)
Further Information

Matt Parker is a stand-up comedian and mathematician. He appears regularly on TV and online and is a presenter on the Discovery Channel. As part of the comedy group Festival of the Spoken Nerd, Matt has toured worldwide and is the first person to use an overhead projector on-stage at the Hammersmith Apollo since Pink Floyd.

Previously a maths teacher, Matt visits schools to talk to students about maths as part of Think Maths and he is involved in the Maths Inspiration shows. He is the Public Engagement in Mathematics Fellow at Queen Mary University of London.

Matt is coming to the Oxford Maths Festival on 12 May and will be signing copies of his new book 'Humble Pi' after his talk. To book a space at this talk, please visit https://mathsfest.web.ox.ac.uk/event/matt-parker. Suitable for ages 16+.

Mon, 02 Jul 2018

16:00 - 17:00
L4

Lauren Williams - Combinatorics of the tree amplituhedron

Lauren Williams
((UC Berkeley))
Abstract

The tree amplituhedron A(n, k, m) is a geometric object generalizing the positive Grassmannian, which was introduced by Arkani-Hamed and Trnka in 2013 in order to give a geometric basis for the computation of scattering amplitudes in N=4 supersymmetric Yang-Mills theory. I will give a gentle introduction to the amplituhedron, and then describe what it looks like in various special cases. For example, one can use the theory of sign variation and matroids to show that the amplituhedron A(n, k, 1) can be identified with the complex of bounded faces of a cyclic hyperplane arrangement. I will also present some conjectures relating the amplituhedron A(n, k, m) to combinatorial objects such as non-intersecting lattice paths and plane partitions. This is joint work with Steven Karp, and part of it is additionally joint work with Yan Zhang.

Thu, 28 Jun 2018

17:00 - 18:00
L1

Fernando Vega-Redondo - Contagious disruptions and complexity traps in economic development

Fernando Vega-Redondo
(Bocconi University)
Abstract

Poor economies not only produce less; they typically produce things that involve fewer inputs and fewer intermediate steps. Yet the supply chains of poor countries face more frequent disruptions - delivery failures, faulty parts, delays, power outages, theft, government failures - that systematically thwart the production process.

To understand how these disruptions affect economic development, we model an evolving input-output network in which disruptions spread contagiously among optimizing agents. The key finding is that a poverty trap can emerge: agents adapt to frequent disruptions by producing simpler, less valuable goods, yet disruptions persist. Growing out of poverty requires that agents invest in buffers to disruptions. These buffers rise and then fall as the economy produces more complex goods, a prediction consistent with global patterns of input inventories. Large jumps in economic complexity can backfire. This result suggests why "big push" policies can fail, and it underscores the importance of reliability and of gradual increases in technological complexity.

Fri, 08 Jun 2018

16:00 - 18:00

QBIOX Colloquium

Philip Maini, Edward Morrissey, Heather Harrington
(St Anne's College Tsuzuki Lecture theatre)
Abstract

1600-1645 - Philip Maini
1645-1705 - Edward Morrissey
1705-1725 - Heather Harrington
1725-1800 - Drinks and networking

The talks will be followed by a drinks reception.

Tickets can be obtained from https://www.eventbrite.co.uk/e/qbiox-colloquium-trinity-term-2018-ticke….
(As ever, tickets are not necessary, but they do help in judging catering requirements.)

PHILIP MAINI

Does mathematics have anything to do with biology? In this talk, I will review a number of interdisciplinary collaborations in which I have been involved over the years that have coupled mathematical modelling with experimental studies to try to advance our understanding of processes in biology and medicine. Examples will include somatic evolution in tumours, collective cell movement in epithelial sheets, cell invasion in neural crest, and pattern formation in slime mold. These are examples where verbal reasoning models are misleading and insufficient, while mathematical models can enhance our intuition.

EDWARD MORRISEY

Fixation and spread of somatic mutations in adult human colonic epithelium Cancer causing mutations must become permanently fixed within tissues. I will describe how, by visualizing somatic clones, we investigated the means and timing with which this occurs in the human colonic epithelium. Modelling the effects of gene mutation, stem cell dynamics and subsequent lateral expansion revealed that fixation required two sequential steps. First, one of around seven active stem cells residing within each colonic gland has to be mutated. Second, the mutated stem cell has to replace neighbours to populate the entire gland. This process takes many years because stem cell replacement is infrequent (around once every 9 months). Subsequent clonal expansion due to gland fission is also rare for neutral mutations. Pro-oncogenic mutations can subvert both stem cell replacement to accelerate fixation and clonal expansion by gland fission to achieve high mutant allele frequencies with age. The benchmarking and quantification of these behaviours allows the advantage associated with different gene specific mutations to be compared and ranked irrespective of the cellular mechanisms by which they are conferred. The age related mutational burden of advantaged mutations can be predicted on a gene-by-gene basis to identify windows of opportunity to affect fixation and limit spread.

HEATHER HARRINGTON

Comparing models with data using computational algebra In this talk I will discuss how computational algebraic geometry and topology can be useful for studying questions arising in systems biology. In particular I will focus on the problem of comparing models and data through the lens of computational algebraic geometry and statistics. I will provide concrete examples of biological signalling systems that are better understood with the developed methods.

Fri, 11 May 2018

15:00 - 16:30
L4

Kolam: An Ephemeral Women's Art of South India

Claudia Silva & Oscar Garcia-Prada
(Madrid)
Abstract

Oscar García-Prada - The Mathematics of Kolam

In Tamil Nadu, a state in southern India, it is an old tradition to decorate the entrance to the home with a geometric figure called ``Kolam''. A kolam is a geometrical line drawing composed of curved loops, drawn around a grid pattern of dots. This is typically done by women using white rice flour. Kolams have connections to discrete mathematics, number theory, abstract algebra, sequences, fractals and computer science. After reviewing a bit of its history, Oscar will explore some of these connections. 

Claudia Silva - Kolam: An Ephemeral Women´s art of South India

Kolam is a street drawing, performed by women in south India. This daily ritual of "putting" the kolam on the ground represents a time of intimacy, concentration and creativity. Through some videos, Claudia will explain some basic features of kolam, focusing on anthropological, religious, educational and artistic aspects of this beautiful female art expression.

The lectures are accompanied by a photography exhibition at Wolfson College.

Thu, 22 Mar 2018

09:00 - 17:00
L2

The history of computing beyond the computer

Marie Hicks, Adrian Johnstone, Cliff Jones, Julianne Nyhan, Mark Priestly, Reinhard Siegmund-Schultze
(Various)
Abstract

The BSHM meeting on “The history of computing beyond the computer” looks at the people and the science underpinning modern software and programming, from Charles Babbage’s design notation to forgotten female pioneers.

Registration will be £32.50 for standard tickets, £22.00 for BSHM members and Oxford University staff, and £6.50 for students. This will include tea/coffee and biscuits at break times, but not lunch, as we wanted to keep the registration fee to a minimum. A sandwich lunch or a vegetarian sandwich lunch can be ordered separately on the Eventbrite page. If you have other dietary requirements, please use the contact button at the bottom of this page. There is also a café in the Mathematical Institute that sells hot food at lunchtime, alongside sandwiches and snacks, and there are numerous places to eat within easy walking distance.

https://www.eventbrite.co.uk/e/the-history-of-computing-beyond-the-comp…

Programme

21 March 2018

17:00 Andrew Hodges, University of Oxford, author of "Alan Turing: The Enigma” on 'Alan Turing: soft machine in a hard world.’
http://www.turing.org.uk/index.html

22 March 2018

9:00 Registration

9:30 Adrian Johnstone, Royal Holloway University of London, on Charles Babbage's design notation
http://blog.plan28.org/2014/11/babbages-language-of-thought.html

10:15 Reinhard Siegmund-Schultze, Universitetet i Agder, on early numerical methods in the analysis of the Northern Lights
https://www.uia.no/kk/profil/reinhars

11:00 Tea/Coffee

11:30 Julianne Nyhan, University College London, on Father Busa and humanities data
https://archelogos.hypotheses.org/135

12:15 Cliff Jones, University of Newcastle, on the history of programming language semantics
http://homepages.cs.ncl.ac.uk/cliff.jones/

13:00 Lunch

14:00 Mark Priestley, author of "ENIAC in Action, Making and Remaking the Modern Computer"
http://www.markpriestley.net

14:45 Marie Hicks, University of Wisconsin-Madison, author of "Programmed Inequality: How Britain Discarded Women Technologists and Lost Its Edge In Computing"
http://mariehicks.net

15:30 Tea/Coffee

16:00 Panel discussion to include Martin Campbell-Kelly (Warwick), Andrew Herbert (TNMOC), and Ursula Martin (Oxford)

17:00 End of conference

Co-located event

23 March, in Mathematical Institute, University of Oxford, Symposium for the History and Philosophy of Programming, HaPoP 2018, Call for extended abstracts
http://www.hapoc.org/node/241

 

Fri, 02 Feb 2018

17:15 - 18:15
L1

Knowledge Under Siege: The Future of Expertise In The Information Age

Tom Nichols
(Harvard University)
Abstract

Today, everyone knows everything: with only a quick trip through WebMD or Wikipedia, average citizens believe themselves to be on an equal intellectual footing with doctors and diplomats. All voices, even the most ridiculous, demand to be taken with equal seriousness, and any claim to the contrary is dismissed as undemocratic elitism. Tom Nichols argues that in this climate, democratic institutions themselves are in danger of falling either to populism or to technocracy- or in the worst case, a combination of both.

Tom Nichols is Professor of National Security Affairs at the US Naval War College, an adjunct professor at the Harvard Extension School, and a former aide in the U.S. Senate. His latest book is The Death of Expertise: The Campaign Against Established Knowledge and Why it Matters. This lecture is based on that book.

All welcome. No need to book.

Mon, 15 Jan 2018

13:00 - 17:00
L1

Abel in Oxford - Lectures by Abel Prize winners and members of the Abel Prize Committee

Andrew Wiles, Irene Fonseca, John Rognes
(University of Oxford)
Abstract

Timetable:

1.00pm: Introductory Remarks by Camilla Serck-Hanssen, the Vice President of the Norwegian Academy of Science and Letters

1.10pm - 2.10pm: Andrew Wiles

2.10pm - 2.30pm: Break

2.30pm - 3.30pm: Irene Fonseca

3.30pm - 4.00pm: Tea and Coffee

4.00pm - 5.00pm: John Rognes

Abstracts:

Andrew Wiles: Points on elliptic curves, problems and progress

This will be a survey of the problems concerned with counting points on elliptic curves.

-------

Irene Fonseca: Mathematical Analysis of Novel Advanced Materials

Quantum dots are man-made nanocrystals of semiconducting materials. Their formation and assembly patterns play a central role in nanotechnology, and in particular in the optoelectronic properties of semiconductors. Changing the dots' size and shape gives rise to many applications that permeate our daily lives, such as the new Samsung QLED TV monitor that uses quantum dots to turn "light into perfect color"! 

Quantum dots are obtained via the deposition of a crystalline overlayer (epitaxial film) on a crystalline substrate. When the thickness of the film reaches a critical value, the profile of the film becomes corrugated and islands (quantum dots) form. As the creation of quantum dots evolves with time, materials defects appear. Their modeling is of great interest in materials science since material properties, including rigidity and conductivity, can be strongly influenced by the presence of defects such as dislocations. 

In this talk we will use methods from the calculus of variations and partial differential equations to model and mathematically analyze the onset of quantum dots, the regularity and evolution of their shapes, and the nucleation and motion of dislocations.

-------

John Rognes: Symmetries of Manifolds

To describe the possible rotations of a ball of ice, three real numbers suffice.  If the ice melts, infinitely many numbers are needed to describe the possible motions of the resulting ball of water.  We discuss the shape of the resulting spaces of continuous, piecewise-linear or differentiable symmetries of spheres, balls and higher-dimensional manifolds.  In the high-dimensional cases the answer turns out to involve surgery theory and algebraic K-theory.

Fri, 03 Nov 2017

17:00 - 18:15

The Annual Charles Simonyi Lecture: Geoffrey West - Scale: the universal laws of growth

The Annual Charles Simonyi Lecture - Geoffrey West
(Los Alamos National Laboratory & Santa Fe Institute)
Abstract

In this year’s Simonyi Lecture, Geoffrey West discusses the universal laws that govern everything from the growth of plants and animals to cities and corporations. These laws help us to answer big, urgent questions about global sustainability, population explosion, urbanization, ageing, cancer, human lifespans and the increasing pace of life.

Why can we live for 120 years but not for a thousand? Why do mice live for just two or three years and elephants for up to 75? Why do companies behave like mice, and are they all destined to die? Do cities, companies and human beings have natural, pre-determined lifespans?

Geoffrey West is a theoretical physicist whose primary interests have been in fundamental questions in physics and biology. West is a Senior Fellow at Los Alamos National Laboratory and a distinguished professor at the Sante Fe Institute, where he served as the president from 2005-2009. In 2006 he was named to Time’s list of The 100 Most Influential People in the World.

This lecture will take place at the Oxford Playhouse, Beaumont Street. Book here

 

Thu, 24 Aug 2017

15:00 - 16:00
L6

Unbounded derived categories and the finitistic dimension conjecture.

Jeremy Rickard
(Bristol University)
Abstract

Abstract: If A is a finite dimensional algebra, and D(A) the unbounded
derived category of the full module category Mod-A, then it is
straightforward to see that D(A) is generated (as a "localizing
subcategory") by the indecomposable projectives, and by the simple 
modules. It is not so obvious whether it is generated by the 
indecomposable injectives. In 2001, Keller gave a talk in which he 
remarked that"injectives generate" would imply several of the well-known
homological conjectures, such as the Nunke condition and hence the 
generalized Nakayama
conjecture, and asked if there was any relation to the finitistic 
dimension conjecture. I'll show that an algebra that satisfies "injectives 
generate" also satisfies the finitistic dimension conjecture and discuss 
some examples. I'll present things in a fairly concrete way, so most of 
the talk won't assume much knowledge of derived categories.

 

Thu, 24 Aug 2017

14:00 - 15:00
L6

On Hochschild cohomology and global/local structures

Lleonard Rubio y Degrassi
(City University London)
Abstract

Abstract: In this talk I will discuss the interplay between the local and
the global invariants in modular representation theory with a focus on the
first Hochschild cohomology $\mathrm{HH}^1(B)$ of a block algebra $B$. In
particular, I will show the compatibility between $r$-integrable 
derivations
and stable equivalences of Morita type. I will also show that if
$\mathrm{HH}^1(B)$ is a simple Lie algebra such that $B$ has a unique
isomorphism class of simple modules, then $B$ is nilpotent with an
elementary abelian defect group $P$ of order at least 3. The second part 
is joint work with M. Linckelmann.

Thu, 24 Aug 2017

11:30 - 12:30
L6

Quivers and Conformal Field Theory: preprojective algebras and beyond.

Alastair King
(Bath University)
Abstract

Abstract: I will describe how the ADE preprojective algebras appear in 
certain Conformal Field Theories, namely SU(2) WZW models, and explain
the generalisation to the SU(3) case, where 'almost CY3' algebras appear.