Fri, 28 May 2021

16:00 - 17:00
Virtual

North Meets South

Clemens Koppensteiner and David Gómez-Castro
(University of Oxford)
Abstract

Clemens Koppensteiner
Categorifying Heisenberg algebras

Categorification replaces set-theoretic structures with category-theoretic analogues. We discuss what this means and why it is useful. We then discuss recent work on categorifying Heisenberg algebras and their Fock space representations. In particular this gives a satisfying answer to an observation about equivariant K-theory made by Ian Grojnowski in 1996.

 

Aggregation-Diffusion Equations
David Gómez-Castro

The aim of this talk is to discuss an evolution problem modelling particles systems exhibiting aggregation and diffusion phenomena, and we will focus mostly on the so-called Aggregation-Diffusion Equation: ∂ρ ∂t = ∇ · (ρ ∇(U′ (ρ) + V + W ∗ ρ)) (ADE)

First, we will discuss the modelling. The famous case U′ (ρ) = log ρ and W = 0 is the famous Heat Equation. In the classical literature, the term U′(ρ) is typically deduced from Darcy’s law and models an internal energy of the system. We will show through particle systems how the term V models a confinement energy and W ∗ ρ an aggregation energy. The complete model covers many famous examples from different disciplines: Porous Media, Fokker-Plank, Keller-Segel and others. After this modelling, we discuss the mathematical treatment of (ADE). As in the case of the Heat Equation, the diffusion cases where W = V = 0 are typically studied in the Lebesgue and Sobolev spaces. However, as in the Keller-Segel problem, a Dirac measures may appear in finite time. We present the Wasserstein distance between measures, which is a natural framework for these equations, connecting with the theory of Optimal Transport. In fact, when U, V and W are convex, (ADE) can be studied as the gradient-flow of a free-energy functional (i.e. curves minimising this energy) in this Wasserstein distance, applying Calculus of Variations techniques. We will discuss the minimisation problem associated to F, with an interest to the existence of Dirac measures. Finally, we will present new results showing that indeed, in some cases besides Keller-Segel, states with a Delta can be achieved through solutions of the evolution problem

Fri, 28 May 2021

15:00 - 16:00
Virtual

The applications and algorithms of correspondence modules - Haibin Hang

Haibin Hang
(University of Delaware)
Abstract

 In this work we systematically introduce relations to topological data analysis (TDA) in the categories of sets, simplicial complexes and vector spaces to characterize and study the general dynamical behaviors in a consistent way. The proposed framework not only offers new insights to the classical TDA methodologies, but also motivates new approaches to interesting applications of TDA in dynamical metric spaces, dynamical coverings, etc. The associated algorithm which produces barcode invariants, and relations in more general categories will also be discussed.

Fri, 28 May 2021
12:45

Boundary causality violating metrics in holography

Diandian Wang
(University of California Santa Barbara)
Abstract

A well-behaved field theory living on a fixed background has a causality structure defined by the background metric. In holography, however, signals can travel through the bulk, and some bulk metrics would allow a signal to travel faster than the speed of light as seen on the boundary. These are called boundary causality violating metrics. Holographers usually work with a classical bulk metric, in which case they declare that boundary causality violating metrics are forbidden. However, in a full quantum gravity path integral, these metrics do contribute. The question is then: how to avoid causality violation in this context? In this talk I will give a prescription that achieves this.

Fri, 28 May 2021

12:00 - 13:00

Invariants for persistent homology and their stability

Nina Otter
(UCLA)
Abstract

One of the most successful methods in topological data analysis (TDA) is persistent homology, which associates a one-parameter family of spaces to a data set, and gives a summary — an invariant called "barcode" — of how topological features, such as the number of components, holes, or voids evolve across the parameter space. In many applications one might wish to associate a multiparameter family of spaces to a data set. There is no generalisation of the barcode to the multiparameter case, and finding algebraic invariants that are suitable for applications is one of the biggest challenges in TDA.

The use of persistent homology in applications is justified by the validity of certain stability results. At the core of such results is a notion of distance between the invariants that one associates to data sets. While such distances are well-understood in the one-parameter case, the study of distances for multiparameter persistence modules is more challenging, as they rely on a choice of suitable invariant.

In this talk I will first give a brief introduction to multiparameter persistent homology. I will then present a general framework to study stability questions in multiparameter persistence: I will discuss which properties we would like invariants to satisfy, present different ways to associate distances to such invariants, and finally illustrate how this framework can be used to derive new stability results. No prior knowledge on the subject is assumed.

The talk is based on joint work with Barbara Giunti, John Nolan and Lukas Waas. 

Fri, 28 May 2021

11:45 - 13:15
Virtual

InFoMM CDT Group Meeting

Anna Berryman, Georgia Brennan, Matthew Shirley,
(Mathematical Institute)
Fri, 28 May 2021

10:00 - 12:00
Virtual

Vortex Singularities in Ginzburg-Landau Type Problems - Lecture 3 of 3

Professor Radu Ignat
(Institut de Mathématiques de Toulouse)
Further Information

3 x 2 hour Lectures via Zoom (see email of 10th May 2021 for details)

Aimed at: The course is addressed to postgraduate students, postdocs and other members of the Mathematical Institute. It is an introduction to concentration phenomenon around vortices in Ginzburg-Landau type problems. The aim is to present topological methods (based on Jacobian, winding number...) that allow for detection of vortices and computation of the interaction energy between them. The purpose of this course is to analyse vortex singularities appearing in Ginzburg-Landau type problems.

The lecture will be via Zoom and the link was also sent out in an email on 10th May 

 

 

 

Thu, 27 May 2021

16:45 - 17:30

C*-equivalence of directed graphs

Soren Eilers
(Copenhagen)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

The graph C*-algebra construction associates a unital C*-algebra to any directed graph with finitely many vertices and countably many edges in a way which generalizes the fundamental construction by Cuntz and Krieger. We say that two such graphs are C*-equivalent when they define isomorphic C*-algebras, and give a description of this relation as the smallest equivalence relation generated by a number of "moves" on the graph that leave the C*-algebras unchanged. The talk is based on recent work with Arklint and Ruiz, but most of these moves have a long history that I intend to present in some detail.

Thu, 27 May 2021

16:00 - 17:00

Model-Free versus Model-Driven Machine Learning

JUSTIN SIRIGNANO
(University of Oxford)
Abstract


Model-free machine learning is a tabula rasa method, estimating parametric functions purely from the data. In contrast, model-driven machine learning augments mathematical models with machine learning. For example, unknown terms in SDEs and PDEs can be represented by neural networks. We compare these two approaches, discuss their mathematical theory, and present several examples. In model-free machine learning, we use reinforcement learning to train order-execution models on limit order book data. Event-by-event simulation, based on the historical order book dataset, is used to train and evaluate limit order strategies. In model-driven machine learning, we develop SDEs and PDEs with neural network terms for options pricing as well as, in an application outside of finance, predictive modeling in physics. We are able to prove global convergence of the optimization algorithm for a class of linear elliptic PDEs with neural network terms.


 

Thu, 27 May 2021

16:00 - 16:45
Virtual

Jones index for subfactors

Emily Peters
(Loyola University Chicago)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

In this talk I will explain how a subfactor (ie an inclusion of type II_1 factors) give rise to a diagrammatic algebra called the Temperley-Lieb-Jones algebra. We will observe the connection between the index of the subfactor, and the TLJ algebra. In the TLJ algebra setting, we will observe that indices below four are discrete, while any number above four can be an index.

Thu, 27 May 2021
14:00
Virtual

Algebraic multigrid methods for GPUs

Ulrike Meier Yang
(Lawrence Livermore National Laboratory)
Abstract

Computational science is facing several major challenges with rapidly changing highly complex heterogeneous computer architectures. To meet these challenges and yield fast and efficient performance, solvers need to be easily portable. Algebraic multigrid (AMG) methods have great potential to achieve good performance, since they have shown excellent numerical scalability for a variety of problems. However, their implementation on emerging computer architectures, which favor structure, presents new challenges. To face these difficulties, we have considered modularization of AMG, that is breaking AMG components into smaller kernels to improve portability as well as the development of new algorithms to replace components that are not suitable for GPUs. Another way to achieve performance on accelerators is to increase structure in algorithms. This talk will discuss new algorithmic developments, including a new class of interpolation operators that consists of simple matrix operations for unstructured AMG and efforts to develop a semi-structured AMG method.

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 27 May 2021

14:00 - 15:00
Virtual

Topological QFTs (Part I)

Marieke Van Beest and Sujay Nair
(Mathematical Institute (University of Oxford))
Further Information

Contact organisers (Carmen Jorge-Diaz, Sujay Nair or Connor Behan) to obtain the link. 

Thu, 27 May 2021

12:00 - 13:00
Virtual

Elastocapillary singularities in wetting & creasing

Jacco Snoeijer
(University of Twente)
Abstract

Soft elastic interfaces can strongly deform under the influence of external forces, and can even exhibit elastic singularities. Here we discuss two cases where such singularities occur. First, we describe surface creases that form under compression (or swelling) of an elastic medium. Second, we consider the elastocapillary ridges that form when a soft substrate is wetted by a liquid drop. Analytical descriptions are presented and compared to experiments. We reveal that, like for liquid interfaces, the surface tension of the solid is a key factor in shaping the surface, and determines the nature of the singularity.

Thu, 27 May 2021
11:30
Virtual

Coarse approximate subgroups in weak general position and Elekes-Szabó problems for nilpotent groups

Zou Tingxiang
(University of Münster)
Abstract

The Elekes-Szabó's theorem says very roughly that if a complex irreducible subvariety V of X*Y*Z has ''too many'' intersection with cartesian products of finite sets, then V is in correspondence with the graph of multiplication of an algebraic group G. It was noticed by Breuillard and Wang that the algebraic group G must be abelian. There is a constraint for the finite sets witnessing ''many'' intersections with V, namely a condition called in general position, which plays a key role in forcing the group to be abelian.  In this talk, I will present a result which shows that in the case of the graph of complex algebraic groups, with a weaker general position assumption, nilpotent groups will appear. More precisely, for a connected complex algebraic group G the following are equivalent:

1. The graph of G has ''many'' intersections with finite sets in weak general position;

2. G is nilpotent;

3. The ultrapower of G has a pseudofinite coarse approixmate subgroup in weak general position.

Surprisingly, the proof of the direction from 2 to 3 invokes some form of generic Mordell-Lang theorem for commutative complex algebraic groups.

This is joint work with Martin Bays and Jan Dobrowolski.

Thu, 27 May 2021
10:00
Virtual

TBA

Sophie Ham
(Monash University)
Wed, 26 May 2021

16:30 - 18:00

The strength of determinacy when all sets are universally Baire

Sandra Müller
(TU Wien and University of Vienna)
Abstract

The large cardinal strength of the Axiom of Determinacy when enhanced with the hypothesis that all sets of reals are universally Baire is known to be much stronger than the Axiom of Determinacy itself. In fact, Sargsyan conjectured it to be as strong as the existence of a cardinal that is both a limit of Woodin cardinals and a limit of strong cardinals. Larson, Sargsyan and Wilson showed that this would be optimal via a generalization of Woodin's derived model construction. We will discuss a new translation procedure for hybrid mice extending work of Steel, Zhu and Sargsyan and use this to prove Sargsyan's conjecture.

Wed, 26 May 2021

11:00 - 12:30
Virtual

Extensions of Functions - Lecture 4 of 4

Dr. Krzysztof Ciosmak
(Oxford University)
Further Information

4 x 1.5 hour Lectures 

Aimed at: any DPhil students with interest in learning about extensions of functions. 

 

Suggested Pre-requisites: Suitable for OxPDE students, but also of interests to functional analysts, geometers, probabilists, numerical analysts and anyone who has a suitable level of prerequisite knowledge.

 

Abstract

Abstract. The aim of the course is to present several results on extensions of functions. Among the most important are Kirszbraun's and Whitney's theorems.
They provide powerful technical tools in many problems of analysis. One way to view these theorems is that they show that there exists an interpolation
of data with certain properties. In this context they are useful in computer science, e.g. in clustering of data (see e.g. [26, 23]) and in dimension reduction (see e.g. [15]).

1. Syllabus
Lecture 1. McShane's theorem [25], Kirszbraun's theorem [18, 31, 35], Kneser- Poulsen conjecture [19, 29, 16].
Lecture 2. Whitney's covering and associated partition of unity, Whitney's ex-tension theorem [37, 12, 33].
Lecture 3. Whitney's theorem { minimal Lipschitz extensions [22].
Lecture 4. Ball's extension theorem, Markov type and cotype [6].

2. Required mathematical background
Markov chains, Hilbert spaces, Banach spaces, metric spaces, Zorn lemma

3. Reading list
The reading list consists of all the papers cited above, lecture notes [27], and parts of books [36, 8].

4. Assesment
Students will be encouraged to give a short talk on a topic related to the content of the course. Suggested topics include:
(1) Brehm's theorem [10],
(2) continuity of Kirszbraun's extension theorem [20],
(3) Kirszbraun's theorem for Alexandrov spaces [21, 1],
(4) two-dimensional Kneser-Poulsen conjecture [9],
(5) origami [11],
(6) absolutely minimising Lipschitz extensions and innity Laplacian [17, 32,
34, 2, 3, 5, 4],
(7) Fenchel duality and Fitzpatrich functions [30, 7],
(8) sharp form of Whitney's extension theorem [13],
(9) Whitney's extension theorem for Cm [14],
(10) Markov type and cotype calculation [27, 6, 28], 

(11) extending Lipschitz functions via random metric partitions [24, 27].

References
1. S. Alexander, V. Kapovitch, and A. Petrunin, Alexandrov meets Kirszbraun, 2017.
2. G. Aronsson, Minimization problems for the functional supx F(x; f(x); f0(x)), Ark. Mat. 6 (1965), no. 1, 33{53.
3. , Minimization problems for the functional supx F(x; f(x); f0(x))(ii), Ark. Mat. 6 (1966), no. 4-5, 409{431.
4. , Extension of functions satisfying lipschitz conditions, Ark. Mat. 6 (1967), no. 6, 551{561.
5. , Minimization problems for the functional supx F(x; f(x); f0(x))(iii), Ark. Mat. 7 (1969), no. 6, 509{512.
6. K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geometric & Functional Analysis GAFA 2 (1992), no. 2, 137{172.
7. H. Bauschke, Fenchel duality, Fitzpatrick functions and the extension of rmly nonexpansive mappings, Proceedings of the American Mathematical Society 135 (2007), no. 1, 135{139. MR 2280182
8. Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Colloquium publications (American Mathematical Society) ; v. 48, American Mathematical Society, Providence, R.I., 2000 (eng).
9. K. Bezdek and R. Connelly, Pushing disks apart { the Kneser-Poulsen conjecture in the plane, Journal fur die reine und angewandte Mathematik (2002), no. 553, 221 { 236.
10. U. Brehm, Extensions of distance reducing mappings to piecewise congruent mappings on Rm, J. Geom. 16 (1981), no. 2, 187{193. MR 642266
11. B. Dacorogna, P. Marcellini, and E. Paolini, Lipschitz-continuous local isometric immersions: rigid maps and origami, Journal de Mathematiques Pures et Appliques 90 (2008), no. 1, 66 { 81.
12. L. C. Evans and R. F. Gariepy, Measure theory and ne properties of functions; Rev. ed., Textbooks in mathematics, ch. 6, CRC Press, Oakville, 2015.
13. C. L. Feerman, A sharp form of Whitney's extension theorem, Annals of Mathematics 161 (2005), no. 1, 509{577. MR 2150391
14. , Whitney's extension problem for Cm, Annals of Mathematics 164 (2006), no. 1, 313{359. MR 2233850
15. L.-A. Gottlieb and R. Krauthgamer, A nonlinear approach to dimension reduction, Weizmann Institute of Science.
16. M. Gromov, Monotonicity of the volume of intersection of balls, Geometrical Aspects of Functional Analysis (Berlin, Heidelberg) (J. Lindenstrauss and V. D. Milman, eds.), Springer Berlin Heidelberg, 1987, pp. 1{4.
17. R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Archive for Rational Mechanics and Analysis 123 (1993), no. 1, 51{74.
18. M. Kirszbraun,  Uber die zusammenziehende und Lipschitzsche Transformationen, Fundamenta Mathematicae 22 (1934), no. 1, 77{108 (ger).
19. M. Kneser, Einige Bemerkungen uber das Minkowskische Flachenma, Archiv der Mathematik 6 (1955), no. 5, 382{390.
20. E. Kopecka, Bootstrapping Kirszbraun's extension theorem, Fund. Math. 217 (2012), no. 1, 13{19. MR 2914919
21. U. Lang and V. Schroeder, Kirszbraun's theorem and metric spaces of bounded curvature, Geometric & Functional Analysis GAFA 7 (1997), no. 3, 535{560. MR 1466337
22. E. Le Gruyer, Minimal Lipschitz extensions to dierentiable functions dened on a Hilbert space, Geometric and Functional Analysis 19 (2009), no. 4, 1101{1118. MR 2570317
23. J. Lee, Jl lemma and Kirszbraun's extension theorem, 2020, Sublinear Algorithms for Big Data Lectues Notes, Brown University.
24. J. R. Lee and A. Naor, Extending Lipschitz functions via random metric partitions, Inventiones mathematicae 160 (2005), no. 1, 59{95.
25. E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), no. 12, 837{842. MR 1562984
26. A. Naor, Probabilistic clustering of high dimensional norms, pp. 690{709. 

27. , Metric embeddings and Lipschitz extensions, Princeton University, Lecture Notes, 2015.
28. A. Naor, Y. Peres, O. Schramm, and S. Sheeld, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J. 134 (2006), no. 1, 165{197.
29. E. T. Poulsen, Problem 10, Mathematica Scandinavica 2 (1954), 346.
30. S. Reich and S. Simons, Fenchel duality, Fitzpatrick functions and the Kirszbraun{Valentine extension theorem, Proceedings of the American Mathematical Society 133 (2005), no. 9, 2657{2660. MR 2146211
31. I. J. Schoenberg, On a Theorem of Kirzbraun and Valentine, The American Mathematical Monthly 60 (1953), no. 9, 620{622. MR 0058232
32. S. Sheeld and C. K. Smart, Vector-valued optimal Lipschitz extensions, Communications on Pure and Applied Mathematics 65 (2012), no. 1, 128{154. MR 2846639
33. E. Stein, Singular integrals and dierentiability properties of functions, ch. 6, Princeton University Press, 1970.
34. P. V. Than, Extensions lipschitziennes minimales, Ph.D. thesis, INSA de Rennes, 2015.
35. F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83{93. MR 0011702
36. J. H. Wells and L. R. Williams, Embeddings and extensions in analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete ; Bd. 84, Springer-Verlag, Berlin, 1975 (eng).
37. H. Whitney, Analytic extensions of dierentiable functions dened in closed sets, Transactions of the American Mathematical Society 36 (1934), no. 1, 63{89. MR 1501735 

University of Oxford, Mathematical Institute and St John's College, Oxford, United Kingdom
E-mail address: @email

Tue, 25 May 2021

17:00 - 19:15

I is a Strange Loop - Written and performed by Marcus du Sautoy and Victoria Gould

Marcus du Sautoy and Victoria Gould
(University of Oxford)
Further Information
Oxford Mathematics Public Lecture in partnership with Faber Members
Tuesday 25 May 2021
5.00-7.15pm

From the creative ensemble behind Complicité’s sensational A Disappearing Number, this two-hander unfolds to reveal an intriguing take on mortality, consciousness and artificial life. Alone in a cube that glows in the darkness, X is content with its infinite universe and abstract thought. But then Y appears, insisting they interact, exposing X to Y's sensory and physical existence. Each begins to hanker after what the other has until a remarkable thing happens … involving a strange loop. 

After the screening and to coincide with publication of the script by Faber, Marcus and Victoria are joined by Simon McBurney, founder of Complicite, to discuss the play and mathematics and theatre.

A discount of 25 per cent on the playtext is available from faber.co.uk using the code LOOP25 from May 20.

Watch (no need to register and it will remain available after broadcast):

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Tue, 25 May 2021

15:30 - 16:30

Moments of moments of random matrices and Gaussian multiplicative chaos

Mo Dick Wong
(University of Oxford)
Abstract

There has been a lot of interest in recent years in understanding the multifractality of characteristic polynomials of random matrices. In this talk I shall consider the study of moments of moments from the probabilistic perspective of Gaussian multiplicative chaos, and in particular establish exact asymptotics for the so-called critical-subcritical regime in the context of large Haar-distributed unitary matrices. This is based on a joint work with Jon Keating.

Tue, 25 May 2021
15:30
Virtual

Cycle lengths in sparse random graphs

Michael Krivelevich
(Tel Aviv)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

We study the set $L(G)$ of cycle lengths that appear in a sparse binomial random graph $G(n,c/n)$ and in a random $d$-regular graph $G_{n,d}$. We show in particular that for most values of $c$, for $G$ drawn from $G(n,c/n)$ the set $L(G)$ contains typically an interval $[\omega(1), (1-o(1))L_{\max}(G)]$, where $L_{\max}(G)$ is the length of a longest cycle (the circumference) of $G$. For the case of random $d$-regular graphs, $d\geq 3$ fixed, we obtain an accurate asymptotic estimate for the probability of $L(G)$ to contain a full interval $[k,n]$ for a fixed $k\geq 3$. Similar results are obtained also for the supercritical case $G(n,(1+\epsilon)/n)$, and for random directed graphs.
A joint work with Yahav Alon and Eyal Lubetzky.

Tue, 25 May 2021
14:00
Virtual

Crossing probabilities for planar percolation

Vincent Tassion
(ETH)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Percolation models were originally introduced to describe the propagation of a fluid in a random medium. In dimension two, the percolation properties of a model are encoded by so-called crossing probabilities (probabilities that certain rectangles are crossed from left to right). In the eighties, Russo, Seymour and Welsh obtained general bounds on crossing probabilities for Bernoulli percolation (the most studied percolation model, where edges of a lattice are independently erased with some given probability $1-p$). These inequalities rapidly became central tools to analyze the critical behavior of the model.
In this talk I will present a new result which extends the Russo-Seymour-Welsh theory to general percolation measures satisfying two properties: symmetry and positive correlation. This is a joint work with Laurin Köhler-Schindler.

Tue, 25 May 2021

14:00 - 15:00
Virtual

FFTA: Flow stability for dynamic community detection

Alexandre Bovet
(Univertsity of Oxford)
Abstract

Many systems exhibit complex temporal dynamics due to the presence of different processes taking place simultaneously. Temporal networks provide a framework to describe the time-resolve interactions between components of a system. An important task when investigating such systems is to extract a simplified view of the temporal network, which can be done via dynamic community detection or clustering. Several works have generalized existing community detection methods for static networks to temporal networks, but they usually rely on temporal aggregation over time windows, the assumption of an underlying stationary process, or sequences of different stationary epochs. Here, we derive a method based on a dynamical process evolving on the temporal network and restricted by its activation pattern that allows to consider the full temporal information of the system. Our method allows dynamics that do not necessarily reach a steady state, or follow a sequence of stationary states. Our framework encompasses several well-known heuristics as special cases. We show that our method provides a natural way to disentangle the different natural dynamical scales present in a system. We demonstrate our method abilities on synthetic and real-world examples.

arXiv link: https://arxiv.org/abs/2101.06131

Tue, 25 May 2021
12:00
Virtual

Planckian correction to  Polyakov loop space

Mir Faizal
(Canadian Quantum Research Center and University of Lethbridge)
Abstract

I will be first introducing the Polyakov loop space formalism to
gauge theories. I will also discuss how the Polyakov loop space is modified
by Planck scale corrections.  The gauge theory will be deformed by the
Planck length as the minimum measurable length in the background spacetime.
This deformation will in turn deform the Polyakov loops space. It will be
observed that this deformation can have important consequences for
non-abelian monopoles in gauge theories.

Tue, 25 May 2021

11:00 - 12:30
Virtual

Extensions of Functions - Lecture 3 of 4

Dr. Krzysztof Ciosmak
(Oxford University)
Further Information

4 x 1.5 hour Lectures 

Aimed at: any DPhil students with interest in learning about extensions of functions. 

Suggested Pre-requisites: Suitable for OxPDE students, but also of interests to functional analysts, geometers, probabilists, numerical analysts and anyone who has a suitable level of prerequisite knowledge.

 

Abstract

Abstract. The aim of the course is to present several results on extensions of functions. Among the most important are Kirszbraun's and Whitney's theorems.
They provide powerful technical tools in many problems of analysis. One way to view these theorems is that they show that there exists an interpolation
of data with certain properties. In this context they are useful in computer science, e.g. in clustering of data (see e.g. [26, 23]) and in dimension reduction (see e.g. [15]).

1. Syllabus
Lecture 1. McShane's theorem [25], Kirszbraun's theorem [18, 31, 35], Kneser- Poulsen conjecture [19, 29, 16].
Lecture 2. Whitney's covering and associated partition of unity, Whitney's ex-tension theorem [37, 12, 33].
Lecture 3. Whitney's theorem { minimal Lipschitz extensions [22].
Lecture 4. Ball's extension theorem, Markov type and cotype [6].

2. Required mathematical background
Markov chains, Hilbert spaces, Banach spaces, metric spaces, Zorn lemma

3. Reading list
The reading list consists of all the papers cited above, lecture notes [27], and parts of books [36, 8].

4. Assesment
Students will be encouraged to give a short talk on a topic related to the content of the course. Suggested topics include:
(1) Brehm's theorem [10],
(2) continuity of Kirszbraun's extension theorem [20],
(3) Kirszbraun's theorem for Alexandrov spaces [21, 1],
(4) two-dimensional Kneser-Poulsen conjecture [9],
(5) origami [11],
(6) absolutely minimising Lipschitz extensions and innity Laplacian [17, 32,
34, 2, 3, 5, 4],
(7) Fenchel duality and Fitzpatrich functions [30, 7],
(8) sharp form of Whitney's extension theorem [13],
(9) Whitney's extension theorem for Cm [14],
(10) Markov type and cotype calculation [27, 6, 28], 

(11) extending Lipschitz functions via random metric partitions [24, 27].

References
1. S. Alexander, V. Kapovitch, and A. Petrunin, Alexandrov meets Kirszbraun, 2017.
2. G. Aronsson, Minimization problems for the functional supx F(x; f(x); f0(x)), Ark. Mat. 6 (1965), no. 1, 33{53.
3. , Minimization problems for the functional supx F(x; f(x); f0(x))(ii), Ark. Mat. 6 (1966), no. 4-5, 409{431.
4. , Extension of functions satisfying lipschitz conditions, Ark. Mat. 6 (1967), no. 6, 551{561.
5. , Minimization problems for the functional supx F(x; f(x); f0(x))(iii), Ark. Mat. 7 (1969), no. 6, 509{512.
6. K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geometric & Functional Analysis GAFA 2 (1992), no. 2, 137{172.
7. H. Bauschke, Fenchel duality, Fitzpatrick functions and the extension of rmly nonexpansive mappings, Proceedings of the American Mathematical Society 135 (2007), no. 1, 135{139. MR 2280182
8. Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Colloquium publications (American Mathematical Society) ; v. 48, American Mathematical Society, Providence, R.I., 2000 (eng).
9. K. Bezdek and R. Connelly, Pushing disks apart { the Kneser-Poulsen conjecture in the plane, Journal fur die reine und angewandte Mathematik (2002), no. 553, 221 { 236.
10. U. Brehm, Extensions of distance reducing mappings to piecewise congruent mappings on Rm, J. Geom. 16 (1981), no. 2, 187{193. MR 642266
11. B. Dacorogna, P. Marcellini, and E. Paolini, Lipschitz-continuous local isometric immersions: rigid maps and origami, Journal de Mathematiques Pures et Appliques 90 (2008), no. 1, 66 { 81.
12. L. C. Evans and R. F. Gariepy, Measure theory and ne properties of functions; Rev. ed., Textbooks in mathematics, ch. 6, CRC Press, Oakville, 2015.
13. C. L. Feerman, A sharp form of Whitney's extension theorem, Annals of Mathematics 161 (2005), no. 1, 509{577. MR 2150391
14. , Whitney's extension problem for Cm, Annals of Mathematics 164 (2006), no. 1, 313{359. MR 2233850
15. L.-A. Gottlieb and R. Krauthgamer, A nonlinear approach to dimension reduction, Weizmann Institute of Science.
16. M. Gromov, Monotonicity of the volume of intersection of balls, Geometrical Aspects of Functional Analysis (Berlin, Heidelberg) (J. Lindenstrauss and V. D. Milman, eds.), Springer Berlin Heidelberg, 1987, pp. 1{4.
17. R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Archive for Rational Mechanics and Analysis 123 (1993), no. 1, 51{74.
18. M. Kirszbraun,  Uber die zusammenziehende und Lipschitzsche Transformationen, Fundamenta Mathematicae 22 (1934), no. 1, 77{108 (ger).
19. M. Kneser, Einige Bemerkungen uber das Minkowskische Flachenma, Archiv der Mathematik 6 (1955), no. 5, 382{390.
20. E. Kopecka, Bootstrapping Kirszbraun's extension theorem, Fund. Math. 217 (2012), no. 1, 13{19. MR 2914919
21. U. Lang and V. Schroeder, Kirszbraun's theorem and metric spaces of bounded curvature, Geometric & Functional Analysis GAFA 7 (1997), no. 3, 535{560. MR 1466337
22. E. Le Gruyer, Minimal Lipschitz extensions to dierentiable functions dened on a Hilbert space, Geometric and Functional Analysis 19 (2009), no. 4, 1101{1118. MR 2570317
23. J. Lee, Jl lemma and Kirszbraun's extension theorem, 2020, Sublinear Algorithms for Big Data Lectues Notes, Brown University.
24. J. R. Lee and A. Naor, Extending Lipschitz functions via random metric partitions, Inventiones mathematicae 160 (2005), no. 1, 59{95.
25. E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), no. 12, 837{842. MR 1562984
26. A. Naor, Probabilistic clustering of high dimensional norms, pp. 690{709. 

27. , Metric embeddings and Lipschitz extensions, Princeton University, Lecture Notes, 2015.
28. A. Naor, Y. Peres, O. Schramm, and S. Sheeld, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J. 134 (2006), no. 1, 165{197.
29. E. T. Poulsen, Problem 10, Mathematica Scandinavica 2 (1954), 346.
30. S. Reich and S. Simons, Fenchel duality, Fitzpatrick functions and the Kirszbraun{Valentine extension theorem, Proceedings of the American Mathematical Society 133 (2005), no. 9, 2657{2660. MR 2146211
31. I. J. Schoenberg, On a Theorem of Kirzbraun and Valentine, The American Mathematical Monthly 60 (1953), no. 9, 620{622. MR 0058232
32. S. Sheeld and C. K. Smart, Vector-valued optimal Lipschitz extensions, Communications on Pure and Applied Mathematics 65 (2012), no. 1, 128{154. MR 2846639
33. E. Stein, Singular integrals and dierentiability properties of functions, ch. 6, Princeton University Press, 1970.
34. P. V. Than, Extensions lipschitziennes minimales, Ph.D. thesis, INSA de Rennes, 2015.
35. F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83{93. MR 0011702
36. J. H. Wells and L. R. Williams, Embeddings and extensions in analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete ; Bd. 84, Springer-Verlag, Berlin, 1975 (eng).
37. H. Whitney, Analytic extensions of dierentiable functions dened in closed sets, Transactions of the American Mathematical Society 36 (1934), no. 1, 63{89. MR 1501735 

University of Oxford, Mathematical Institute and St John's College, Oxford, United Kingdom
E-mail address: @email

Mon, 24 May 2021

16:00 - 17:00

Phase Analysis for a family of stochastic reaction-diffusion equations

DAVAR KHOSHNEVISAN
(University of Utah)
Abstract

We consider a reaction-diffusion equation of the type ∂tψ=∂2xψ+V(ψ)+λσ(ψ)W˙on (0,∞)×?, subject to a "nice" initial value and periodic boundary, where ?=[−1,1] and W˙ denotes space-time white noise. The reaction term V:ℝ→ℝ belongs to a large family of functions that includes Fisher--KPP nonlinearities [V(x)=x(1−x)] as well as Allen-Cahn potentials [V(x)=x(1−x)(1+x)], the multiplicative nonlinearity σ:ℝ→ℝ is non random and Lipschitz continuous, and λ>0 is a non-random number that measures the strength of the effect of the noise W˙. The principal finding of this paper is that: (i) When λ is sufficiently large, the above equation has a unique invariant measure; and (ii) When λ is sufficiently small, the collection of all invariant measures is a non-trivial line segment, in particular infinite. This proves an earlier prediction of Zimmerman et al. (2000). Our methods also say a great deal about the structure of these invariant measures.

This is based on joint work with Carl Mueller (Univ. Rochester) and Kunwoo Kim (POSTECH, S. Korea).