The positive Jacobian constraint in elasticity theory and orientation-preserving Young measures
Abstract
In elasticity theory, one naturally requires that the Jacobian determinant of the deformation is positive or even a-priori prescribed (for example incompressibility). However, such strongly non-linear and non-convex constraints are difficult to deal with in mathematical models. In this talk, which is based on joint work with K. Koumatos (Oxford) and E. Wiedemann (UBC/PIMS), I will present various recent results on how this constraint can be manipulated in subcritical Sobolev spaces, where the integrability exponent is less than the dimension.
In particular, I will give a characterization theorem for Young measures under this side constraint, which are widely used in the Calculus of Variations to model limits of nonlinear functions of weakly converging "generating" sequences. This is in the spirit of the celebrated Kinderlehrer--Pedregal Theorem and based on convex integration and "geometry" in matrix space.
Finally, applications to the minimization of integral functionals, the theory of semiconvex hulls, incompressible extensions, and approximation of weakly orientation-preserving maps by strictly orientation-preserving ones in Sobolev spaces are given.
Topology of Sobolev spaces and Local minimizers
Abstract
Attempting to extend the methods of critical point theory (e.g., those of Morse theory and Lusternik-Schnirelman theory) to the study of strong local minimizers of integral functionals of the calculus of variations I will describe how the obstruction method of algebraic topology can be successfully used to tackle the enumeration problem for various homotopy classes of maps in Sobolev spaces and that how this will result in precise lower bounds on the number of such local minimizers in terms of convenient topological invariants of the underlying spaces. I will then move on to dicussing variants as well as applications of the result to some classes of geometric nonlinear PDEs in particular problems in nonlinear elasticity.
Functionals defined on 1-rectifiable sets and the application to the theory of dislocations
Abstract
In the theory of dislocations one is naturally led to consider energies of “line tension” type concentrated on lines. These lines may have a local vector-valued multiplicity, and the energy may depend on this multiplicity and on the orientation of the line. In the two-dimensional case this problem reduces to the classical problem of energies defined on partitions which arises in the sharp-interface models for phase transitions.
I will introduce the main results concerning functionals in the calculus of variations that are defined on partitions. Such partitions are nicely characterized as level sets of function with bounded variations with a discrete set of values. In this setting I will recall the characterization of the lower semicontinuity and the relaxation formula, which gives rise to the notion of BV-ellipticity. The case of dislocations in a three-dimensional crystal requires a formulation in the setting of 1-rectifiable currents with multiplicity in a lattice. In this context I will describe the main results and some examples of interest, in which relaxation is necessary and can be characterized.
Decay for the Maxwell field outside a slowly rotating Kerr black hole
Abstract
The Maxwell equation is an intermediate linear model for
Einstein's equation lying between the scalar wave equation and the
linearised Einstein equation. This talk will present the 5 key
estimates necessary to prove a uniform bound on an energy and a
Morawetz integrated local energy decay estimate for the nonradiating
part.
The major obstacles, relative to the scalar wave equation are: that a
scalar equation must be found for at least one of the components,
since there is no known decay estimate directly at the tensor level;
that the scalar equation has a complex potential; and that there are
stationary solutions and, in the nonzero $a$ Kerr case, it is more
difficult to project away from these stationary solutions.
If time permits, some discussion of a geometric proof using the hidden
symmetries will be given.
This is joint work with L. Andersson and is arXiv:1310.2664.
Conservation laws for the wave equation on null hypersurfaces and applications
Abstract
We will present recent results regarding conservation laws for the wave equation on null hypersurfaces. We will show that an important example of a null hypersurface admitting such conserved quantities is the event horizon of extremal black holes. We will also show that a global analysis of the wave equation on such backgrounds implies that certain derivatives of solutions to the wave equation asymptotically blow up along the event horizon of such backgrounds. In the second part of the talk we will present a complete characterization of null hypersurfaces admitting conservation laws. For this, we will introduce and study the gluing problem for characteristic initial data and show that the only obstruction to gluing is in fact the existence of such conservation laws.
Blow-up of nonlinear wave equations with small initial data-a geometric perspective on shock formation IV
Blow-up of nonlinear wave equations with small initial data-a geometric perspective on shock formation III
Future Dynamics of T2 symmetric polarized spacetimes
Abstract
Joint Work with Philippe G. LeFloch. We consider vacuum
spacetimes with two spatial Killing vectors and with initial data
prescribed on $T^3$. The main results that we will present concern the
future asymptotic behaviour of the so-called polarized solutions. Under
a smallness assumption, we derive a full set of asymptotics for these
solutions. Within this symetry class, the Einstein equations reduce to a
system of wave equations coupled to a system of ordinary differential
equations. The main difficulty, not present in previous study of similar
systems, is that, even in the limit of large times, the two systems do
not directly decouple. We overcome this problem by the introduction of a
new system of ordinary differential equations, whose unknown are
renormalized variables with renormalization depending on the solution of
the non-linear wave equations.
A Large Data Regime for non-linear Wave Equations Lunch
Abstract
The resolution of the bounded L2 curvature conjecture in General Relativity IV
The resolution of the bounded L2 curvature conjecture in General Relativity III
Dynamics of self-gravitating bodies
Abstract
In this talk I will discuss the Cauchy problem for bounded
self-gravitating elastic bodies in Einstein gravity. One of the main
difficulties is caused by the fact that the spacetime curvature must be
discontinuous at the boundary of the body. In order to treat the Cauchy
problem, one must show that the jump in the curvature propagates along
the timelike boundary of the spacetime track of the body. I will discuss
a proof of local well-posedness which takes this behavior into account.
Unique continuation from infinity for linear waves
Abstract
I describe recent unique continuation results for linear wave equations obtained jointly with Spyros Alexakis and Arick Shao. They state, informally speaking, that solutions to the linear wave equation on asymptotically flat spacetimes are completely determined, in a neighbourhood of infinity, from their radiation towards infinity, understood in a suitable sense. We find that the mass of the spacetime plays a decisive role in the analysis.
Null singularities in general relativity
Abstract
We consider spacetimes arising from perturbations of the interior of Kerr
black holes. These spacetimes have a null boundary in the future such that
the metric extends continuously beyond. However, the Christoffel symbols
may fail to be square integrable in a neighborhood of any point on the
boundary. This is joint work with M. Dafermos
Shock formation for 3-dimensional wave equations
Abstract
We present a mechanism of shock formation for a class of quasilinear wave equations. The solutions are stable and no symmetry assumption is assumed. The proof is based on the energy estimates and on the study of Lorentzian geometry defined by the solution.
Blow-up of nonlinear wave equations with small initial data-a geometric perspective on shock formation II
The resolution of the bounded L2 curvature conjecture in General Relativity II
Blow-up of nonlinear wave equations with small initial data-a geometric perspective on shock formation
Abstract
When given an explicit solution to an evolutionary partial differential equation, it is natural to ask whether the solution is stable, and if yes, what is the mechanism for stability and whether this mechanism survives under perturbations of the equation itself. Many familiar linear equations enjoy some notion of stability for the zero solution: solutions of the heat equation dissipate and decay uniformly and exponentially to zero, solutions of the Schrödinger equations disperse at a polynomial rate in time depending on spatial dimension, while solutions of the wave equation enjoy radiative decay (in the presence of at least two spatial dimensions) also at polynomial rates.
For this set of short course sessions, we will focus on the wave equation and its nonlinear perturbations. As mentioned above, the stability mechanism for the linear wave equation is that of radiative decay. Radiative decay depends on the number of spatial dimensions, and hence so does the stability of the zero solution for nonlinear wave equations. By the mid-1980s it was well understood that the stability mechanism survives generally (for “smooth nonlinearities”) when the spatial dimension is at least four, but for lower dimensions (two and three specifically; in dimension one there is no linear stability mechanism to start with) obstructions can arise when the nonlinearities are “stronger” than can be controlled by radiative decay. This led to the discovery of the null condition as a structural condition on the nonlinearities preventing the aforementioned obstructions. But what happens when the null condition is violated? This development spanning a quarter of a century, from F. John’s qualitative analysis of the spherically symmetric case, though S. Alinhac’s sharp control of the asymptotic lifespan, and culminating in D. Christodoulou’s full description of the null geometry, is the subject of this short course.
(1) We will start by reviewing the radiative decay mechanism for wave equations, and indicate the nonlinear stability results for high spatial dimensions. We then turn our attention to the case of three spatial dimensions: after a quick discussion of the null condition for quasilinear wave equations, we sketch, at the semilinear level, what happens when the null condition fails (in particular the asymptotic approximation of the solution by a Riccati equation).
(2) The semilinear picture is built up using a version of the method of characteristics associated with the standard wave operator. Turning to the quasilinear problem we will hence need to understand the characteristic geometry for a variable coefficient wave operator. This leads us to introduce the optical/acoustical function and its associated null structure equations.
(3) From this modern geometric perspective we next discuss, in some detail, the blow-up results obtained in the mid-1980s by F. John for quasilinear wave equations assuming radial symmetry.
(4) Finally, we indicate the main difficulties in extending the analysis to the non-radially-symmetric case, and how they can be resolved à la the recent tour de force of D. Christodoulou. While some knowledge of Lorentzian geometry and dynamics of wave equations will be helpful, this short course should be accessible to also graduate students with training in partial differential equations.
Imperial College London, United Kingdom E-mail address: @email
École Polytechnique Fédérale de Lausanne, Switzerland E-mail address: @email
The resolution of the bounded L2 curvature conjecture in General Relativity
Abstract
A Mathematical Path to a Professional Betting Career - OCCAM Public Lecture
Abstract
Question: Is it a realistic proposition for a mathematician to use his/her skills to make a living from sports betting? The introduction of betting exchanges have fundamentally changed the potential profitability of gambling, and a professional mathematician's arsenal of numerical and theoretical weapons ought to give them a huge natural advantage over most "punters", so what might be realistically possible and what potential risks are involved? This talk will give some idea of the sort of plan that might be required to realise this ambition, and what might be further required to attain the aim of sustainable gambling profitability.
Nielsen equivalence in Random groups
Abstract
We show that for every $n\ge 2$ there exists a torsion-free one-ended word-hyperbolic group $G$ of rank $n$ admitting generating $n$-tuples $(a_1,\ldots ,a_n)$ and $(b_1,\ldots ,b_n)$ such that the $(2n-1)$-tuples $$(a_1,\ldots ,a_n, \underbrace{1,\ldots ,1}_{n-1 \text{ times}})\hbox{ and }(b_1,\ldots, b_n, \underbrace{1,\ldots ,1}_{n-1 \text{ times}} )$$ are not Nielsen-equivalent in $G$. The group $G$ is produced via a probabilistic construction (joint work with Ilya Kapovich).
A lattice construction of 2d Spin Topological Field Theories
Abstract
TQFTs have received widespread attention in recent years. In mathematics
for example due to Lurie's proof of the cobordism hypothesis. In physics
they are used as toy models to understand structure, especially
boundaries and defects.
I will present a lattice construction of 2d Spin TFT. This mostly
motivated as both a toy model and stepping stone for a mathematical
construction of rational conformal field theories with fermions.
I will first describe a combinatorial model for spin surfaces that
consists of a triangulation and a finte set of extra data. This model is
then used to construct TFT correlators as morphisms in a symmetric
monoidal category, given a Frobenius algebra as input. The result is
shown to be independent of the triangulation used, and one obtains thus
a 2dTFT.
All results and constructions can be generalised to framed surfaces in a
relatively straightforward way.
16:00
Special numbers and special functions related to Ramanujan's mock modular forms
Abstract
This lecture will cover two recent works on the mock modular
forms of Ramanujan.
I. Solution of Ramanujan's original conjectures about these functions.
(Joint work with Folsom and Rhoades)
II. A new theorem that mock modular forms are "generating functions" for
central L-values and derivatives of quadratic twist L-functions.
(Joint work with Alfes, Griffin, Rolen).
Worst-Case Portfolio Optimization: Concept and Recent Results
Abstract
Worst-case portfolio optimization has been introduced in Korn and Wilmott
(2002) and is based on distinguishing between random stock price
fluctuations and market crashes which are subject to Knightian
uncertainty. Due to the absence of full probabilistic information, a
worst-case portfolio problem is considered that will be solved completely.
The corresponding optimal strategy is of a multi-part type and makes an
investor indifferent between the occurrence of the worst possible crash
and no crash at all.
We will consider various generalizations of this setting and - as a very
recent result - will in particular answer the question "Is it good to save
for bad times or should one consume more as long as one is still rich?"
14:15
Stick-slip on ice streams: the effects of viscoelasticity
Abstract
Stick-slip behavior is a distinguishing characteristic of the flow of Whillans Ice Stream. Distinct from stick-slip on northern hemisphere glaciers, which is generally attributed to supraglacial melt, the behavior is thought be be controlled by fast processes at the bed and by tidally-induced stress. Modelling approaches to studying this phenomenon typically consider ice to be an elastically-deforming solid (e.g. Winberry et al, 2008; Sergienko et al, 2009). However, there remains a question of whether irreversible, i.e. viscous, deformation is important to the stick-slip process; and furthermore whether the details of stick-slip oscillations are important to ice stream evolution on longer time scales (years to decades).
To address this question I use two viscoelastic models of varying complexity. The first is a modification to the simple block-and-slider models traditionally used to examine earthquake processes on a very simplistic fashion. Results show that the role of viscosity in stick-slip depends on the dominant stress balance. These results are then considered in the context of a continuum description of a viscoelastic ice stream with a rate-weakening base capable of exhibiting stick-slip behavior. With the continuum model we examine the spatial and temporal aspects of stick-slip, their dependence on viscous effects, and how this behavior impacts the mean flow. Different models for the evolution of basal shear stress are examined in the experiments, with qualitatively similar results. A surprising outcome is that tidal effects, while greatly affecting the spectrum of the stick-slip cycle, may have relatively little effect on the mean flow.
Groups acting on trees and beyond
Abstract
In this talk, we will review the classical Bass-Serre theory of groups acting on trees and introduce its real version, Rips' theory. If time permits, I will briefly discuss some higher dimensional spaces that are currently being investigated, namely cubings and real cubings.
Random matrices and the asymptotic behavior of the zeros of the Taylor approximants of the exponential function
Abstract
The plan: start with an introduction to several random matrix ensembles and discuss asymptotic properties of the eigenvalues of the matrices, the last one being the so-called "Normal Matrix Model", and the connection described in the title will be explained. If all goes well I will end with an explanation of asymptotic computations for a new normal matrix model example, which demonstrates a form of universality.
(NOTE CHANGE OF VENUE TO L2)
Pointed Hopf Algebras with triangular decomposition.
Abstract
In this talk, two concepts are brought together: Algebras with triangular decomposition (as studied by Bazlov & Berenstein) and pointed Hopf algebra. The latter are Hopf algebras for which all simple comodules are one-dimensional (there has been recent progress on classifying all finite-dimensional examples of these by Andruskiewitsch & Schneider and others). Quantum groups share both of these features, and we can obtain possibly new classes of deformations as well as a characterization of them.
Certified upper and lower bounds for the eigenvalues of the Maxwell operator
Abstract
We propose a strategy which allows computing eigenvalue enclosures for the Maxwell operator by means of the finite element method. The origins of this strategy can be traced back to over 20 years ago. One of its main features lies in the fact that it can be implemented on any type of regular mesh (structured or otherwise) and any type of elements (nodal or otherwise). In the first part of the talk we formulate a general framework which is free from spectral pollution and allows estimation of eigenfunctions.
We then prove the convergence of the method, which implies precise convergence rates for nodal finite elements. Various numerical experiments on benchmark geometries, with and without symmetries, are reported.
Bottleneck Option
Abstract
An analysis of crystal cleavage in the passage from atomistic models to continuum theory
Abstract
We study the behavior of atomistic models under uniaxial tension and investigate the system for critical fracture loads. We rigorously prove that in the discrete-to- continuum limit the minimal energy satisfies a particular cleavage law with quadratic response to small boundary displacements followed by a sharp constant cut-off beyond some critical value. Moreover, we show that the minimal energy is attained by homogeneous elastic configurations in the subcritical case and that beyond critical loading cleavage along specific crystallographic hyperplanes is energetically favorable. We present examples of mass spring models with full nearest and next-to-nearest pair interactions and provide the limiting minimal energy and minimal configurations.
11:00
"Poincare series counting numbers of definable equivalence classes"
Abstract
Hrushovski-Martin-Rideau have proved rationality of Poincare series counting
numbers of equivalence classes of a definable equivalence relation on the p-adic field (in connection to a problem on counting representations of groups). For this they have proved
uniform p-adic elimination of imaginaries. Their work implies that these Poincare series are
motivic. I will talk about their work.
Free-by-cyclic groups are large
Abstract
I will introduce and motivate the concept of largeness of a group. I will then show how tools from different areas of mathematics can be applied to show that all free-by-cyclic groups are large (and try to convince you that this is a good thing).
10:30
Kazhdan's property (T)
Abstract
Kazhdan introduced property (T) for locally compact topological groups to show that certain lattices in semisimple Lie groups are finitely generated. This talk will give an introduction to property (T) along with some first consequences and examples. We will finish with a classic application of property (T) due to Margulis: the first known construction of expanders.
How many edges are needed to force an $H$-minor?
Abstract
We consider the parameter $a(H)$, which is the smallest a such that if $|E(G)|$ is at least/exceeds $a|V(H)|/2$ then $G$ has an $H$-minor. We are especially interested in sparse $H$ and in bounding $a(H)$ as a function of $|E(H)|$ and $|V(H)|$. This is joint work with David Wood.
Numerical analysis problem solving squad review
Modelling cell population growth in tissue engineering
Abstract
It is often difficult to include sufficient biological detail when modelling cell population growth to make models with real predictive power. Continuum models often fail to capture physical and chemical processes happening at the level of individual cells and discrete cell-based models are often very computationally expensive to solve. In the first part of this talk, I will describe a phenomenological continuum model of cell aggregate growth in a specific perfusion bioreactor cell culture system, and the results of numerical simulations of the model to determine the effects of the bioreactor operating conditions and cell seeding on the growth. In the second part of the talk, I will introduce a modelling approach used to derive continuum models for cell population growth from discrete cell-based models, and consider possible extensions to this framework.
11:00
09:00
More on the loop integrand
Abstract
This will be an informal discussion developing the details of the Amplituhedron for the loop integrand.
The pyjama problem
Abstract
The 'pyjama stripe' is the subset of the plane consisting of a vertical
strip of width epsilon about every integer x-coordinate. The 'pyjama
problem' asks whether finitely many rotations of the pyjama stripe about
the origin can cover the plane.
I'll attempt to outline a solution to this problem. Although not a lot
of this is particularly representative of techniques frequently used in
additive combinatorics, I'll try to flag up whenever this happens -- in
particular ideas about 'limit objects'.
A positive mass theorem for CR manifolds
Abstract
We consider a class of CR manifold which are defined as asymptotically
Heisenberg,
and for these we give a notion of mass. From the solvability of the
$\Box_b$ equation
in a certain functional class ([Hsiao-Yung]), we prove positivity of the
mass under the
condition that the Webster curvature is positive and that the manifold
is embeddable.
We apply this result to the Yamabe problem for compact CR manifolds,
assuming positivity
of the Webster class and non-negativity of the Paneitz operator. This is
joint work with
J.H.Cheng and P.Yang.