Mixed Motives in Number Theory
Abstract
Mixed motives turn up in number theory in various guises. Rather than discuss the rather deep foundational questions involved, this talk will aim
to give several illustrations of the ubiquity of mixed motives and their realizations. Along the way I hope to mention some of: the Mordell-Weil
theorem, the theory of height pairings, special values of L-functions, the Mahler measure of a polynomial, Galois deformations and the motivic
fundamental group.
Low-regularity Riemannian metrics and the positive mass theorem
Abstract
We show that the positive mass theorem holds for
asymptotically flat, $n$-dimensional Riemannian manifolds with a metric
that is continuous, lies in the Sobolev space $W^{2, n/2}_{loc}$, and
has non-negative scalar curvature in the distributional sense. Our
approach requires an analysis of smooth approximations to the metric,
and a careful control of elliptic estimates for a related conformal
transformation problem. If the metric lies in $W^{2, p}_{loc}$ for
$p>n/2$, then we show that our metrics may be approximated locally
uniformly by smooth metrics with non-negative scalar curvature.
This talk is based on joint work with N. Tassotti and conversations with
J.J. Bevan.
Small-particle scaling limits in a regularized Laplacian growth model"
Abstract
With F. Johansson Viklund (Columbia) and A. Turner (Lancaster), we have studied a regularized version of the Hastings-Levitov model of random Laplacian growth. In addition to the usual feedback parameter $\alpha>0$, this regularized version of the growth process features a smoothing parameter $\sigma>0$.
We prove convergence of random clusters, in the limit as the size of the individual aggregating particles tends to zero, to deterministic limits, provided the smoothing parameter does not tend to zero too fast. We also study scalings limit of the harmonic measure flow on the boundary, and show that it can be described in terms of stopped Brownian webs on the circle. In contrast to the case $\alpha=0$, the flow does not always collapse into a single Brownian motion, which can be interpreted as a random number of infinite branches being present in the clusters.
The boundary Harnack principle in fractal spaces
Abstract
Abstract: The boundary Harnack principle states that the ratio of any two functions, which are positive and harmonic on a domain, is bounded near some part of the boundary where both functions vanish. A given domain may or may not have this property, depending on the geometry of its boundary and the underlying metric measure space.
In this talk, we will consider a scale-invariant boundary Harnack principle on domains that are inner uniform. This has applications such as two-sided bounds on the Dirichlet heat kernel, or the identification of the Martin boundary and the topological boundary for bounded inner uniform domains.
The inner uniformity provides a large class of domains which may have very rough boundary as long as there are no cusps. Aikawa and Ancona proved the scale-invariant boundary Harnack principle on inner uniform domains in Euclidean space. Gyrya and Saloff-Coste gave a proof in the setting of non-fractal strictly local Dirichlet spaces that satisfy a parabolic Harnack inequality.
I will present a scale-invariant boundary Harnack principle for inner uniform domains in metric measure Dirichlet spaces that satisfy a parabolic Harnack inequality. This result applies to fractal spaces.
14:00
An Abundance of K3 Fibrations from Polyhedra with Interchangeable Parts
Abstract
Asymmetric information and risk aversion of market makers
Abstract
We analyse the impact of market makers' risk aversion on the equilibrium in a speculative market consisting of a risk neutral informed trader and noise traders. The unwillingness of market makers to bear risk causes the informed trader to absorb large shocks in their inventories. The informed trader's optimal strategy is to drive the market price to its fundamental value while disguising her trades as the ones of an uninformed strategic trader. This results in a mean reverting demand, price reversal, and systematic changes in the market depth. We also find that an increase in risk aversion leads to lower market depth, less efficient prices, stronger price reversal and slower convergence to fundamental value. The endogenous value of private information, however, is non-monotonic in risk aversion. We will mainly concentrate on the case when the private signal of the informed is static. If time permits, the implications of a dynamic signal will be discussed as well.
Based on a joint work with Albina Danilova.
Order in Chaos: The Emergence of Pattern in Random Processes
Abstract
Many years ago, Mark Kac was consulted by biologist colleague Lamont Cole regarding field-based observations of animal populations that suggested the existence of 3-4 year cycles in going from peak to peak. Kac provided an elegant argument for how purely random sequences of numbers could yield a mean value of 3 years, thereby establishing the notion that pattern can seemingly emerge in random processes. (This does not, however, mean that there could be a largely deterministic cause of such population cycles.)
By extending Kac's argument, we show how the distribution of cycle length can be analytically established using methods derived from random graph theory, etc. We will examine how such distributions emerge in other natural settings, including large earthquakes as well as colored Brownian noise and other random models and, for amusement, the Standard & Poor's 500 index for percent daily change from 1928 to the present.
We then show how this random model could be relevant to a variety of spatially-dependent problems and the emergence of clusters, as well as to memory and the aphorism "bad news comes in threes." The derivation here is remarkably similar to the former and yields some intriguing closed-form results. Importantly, the centroids or "centers of mass" of these clusters also yields clusters and a hierarchy then emerges. Certain "universal" scalings appear to emerge and scaling factors reminiscent of Feigenbaum numbers. Finally, as one moves from one dimension to 2, 3, and 4 dimensions, the scaling behaviors undergo modest change leaving this scaling phenomena qualitatively intact.
Finally, we will show how that an adaptation of the Langevin equation from statistical physics provides not simply a null-hypothesis for matching the observation of 3-4 year cycles, but a remarkably simple model description for the behavior of animal populations.
New transfer principles and applications to represenation theory
Abstract
The transfer principle of Ax-Kochen-Ershov says that every first order sentence φ in the language of valued fields is, for p sufficiently big, true in ℚ_p iff it is true in \F_p((t)). Motivic integration allowed to generalize this to certain kinds of non-first order sentences speaking about functions from the valued field to ℂ. I will present some new transfer principles of this kind and explain how they are useful in representation theory. In particular, local integrability of Harish-Chandra characters, which previously was known only in ℚ_p, can be transferred to \F_p((t)) for p >> 1. (I will explain what this means.)
This is joint work with Raf Cluckers and Julia Gordon.
GIT, Symplectic Reduction and the Kempf-Ness Theorem
Abstract
Consider a smooth, complex projective variety X inside P^n and an action of a reductive linear algebraic group G inside GL(n+1,C). On the one hand, we can view this as an algebra-geometric set-up and use geometric invariant theory (GIT) to construct a quotient variety X // G, which parameterises `most' of the closed orbits of X. On the other hand, X is naturally a symplectic manifold, and since G is reductive we can take a maximal real compact Lie subgroup K of G and consider the symplectic reduction of X by K with respect to an appropriate moment map. The Kempf-Ness theorem then says that the results of these two constructions are homeomorphic. In this talk I will define GIT and symplectic reduction and try to sketch the proof of the Kempf-Ness theorem.
Connectivity in confined dense networks
Abstract
We consider a random geometric graph model relevant to wireless mesh networks. Nodes are placed uniformly in a domain, and pairwise connections
are made independently with probability a specified function of the distance between the pair of nodes, and in a more general anisotropic model, their orientations. The probability that the network is (k-)connected is estimated as a function of density using a cluster expansion approach. This leads to an understanding of the crucial roles of
local boundary effects and of the tail of the pairwise connection function, in contrast to lower density percolation phenomena.
A geometric theory of phase transitions in convex optimization
Abstract
Convex regularization has become a popular approach to solve large scale inverse or data separation problems. A prominent example is the problem of identifying a sparse signal from linear samples my minimizing the l_1 norm under linear constraints. Recent empirical research indicates that many convex regularization problems on random data exhibit a phase transition phenomenon: the probability of successfully recovering a signal changes abruptly from zero to one as the number of constraints increases past a certain threshold. We present a rigorous analysis that explains why phase transitions are ubiquitous in convex optimization. It also describes tools for making reliable predictions about the quantitative aspects of the transition, including the location and the width of the transition region. These techniques apply to regularized linear inverse problems, to demixing problems, and to cone programs with random affine constraints. These applications depend on a new summary parameter, the statistical dimension of cones, that canonically extends the dimension of a linear subspace to the class of convex cones.
Joint work with Dennis Amelunxen, Mike McCoy and Joel Tropp.
Various
Abstract
Wei Wei
\newline
Title: "Optimal Switching at Poisson Random Intervention Times"
(joint work with Dr Gechun Liang)
\newline
Abstract: The paper introduces a new class of optimal switching problems, where
the player is allowed to switch at a sequence of exogenous Poisson
arrival times, and the underlying switching system is governed by an
infinite horizon backward stochastic differential equation system. The
value function and the optimal switching strategy are characterized by
the solution of the underlying switching system. In a Markovian setting,
the paper gives a complete description of the structure of switching
regions by means of the comparison principle.
\newline
Julen Rotaetxe
\newline
Title: Applicability of interpolation based finite difference method to problems in finance
\newline
Abstract:
I will present the joint work with Christoph Reisinger on
the applicability of a numerical scheme relying on finite differences
and monotone interpolation to discretize linear and non-linear diffusion
equations. We propose suitable transformations to the process modeling
the underlying variable in order to overcome issues stemming from the
width of the stencil near the boundaries of the discrete spatial domain.
Numerical results would be given for typical diffusion models used in
finance in both the linear and non-linear setting.
Nonlinear wave equations on time dependent inhomogeneous backgrounds
Abstract
We study the nonlinear wave equations on a class of asymptotically flat Lorentzian manifolds $(\mathbb{R}^{3+1}, g)$ with time dependent inhomogeneous metric g. Based on a new approach for proving the decay of solutions of linear wave equations, we give several applications to nonlinear problems. In particular, we show the small data global existence result for quasilinear wave equations satisfying the null condition on a class of time dependent inhomogeneous backgrounds which do not settle to any particular stationary metric.
11:00
Logical limit laws for minor-closed classes of graphs
Abstract
Let $G$ be an addable minor-closed class of graphs. We prove that a zero-one law holds in monadic second-order logic (MSO) for connected graphs in G, and a convergence law in MSO for all graphs in $G$. For each surface $S$, we prove the existence of a zero-one law in first order logic (FO) for connected graphs embeddable in $S$, and a convergence law in FO for all graphs embeddable in $S$. Moreover, the limiting probability that a given FO sentence is satisfied is independent of the surface $S$. If $G$ is an addable minor-closed class, we prove that the closure of the set of limiting probabilities is a finite union of intervals, and it is the same for FO and MSO. For the class of planar graphs it consists of exactly 108 intervals. We give examples of non-addable classes where the results are quite different: for instance, the zero-one law does not hold for caterpillars, even in FO. This is joint work with Peter Heinig, Tobias Müller and Anusch Taraz.
Quasirandomness for Finite Groups and Applications
Abstract
A group is said to be quasirandom if all its unitary representations have “large” dimension. After introducing quasirandom groups and their basic properties, I shall turn to recent applications in two directions: constructions of expanders and non-existence of large product-free sets.
11:30
Group word problems related to the context-free languages
Abstract
17:00
Symplectic Alternating Algebras
Abstract
Let F be a field. A symplectic alternating algebra over F
consists of a symplectic vector space V over F with a non-degenerate
alternating form that is also equipped with a binary alternating
product · such that the law (u·v, w)=(v·w, u) holds. These algebraic
structures have arisen from the study of 2-Engel groups but seem also
to be of interest in their own right with many beautiful properties.
We will give an overview with a focus on some recent work on the
structure of nilpotent symplectic alternating algebras.
Noncommutative algebraic geometry of isolated hypersurface singularities II
Abstract
The concept of a matrix factorization was originally introduced by Eisenbud to study syzygies over local rings of singular hypersurfaces. More recently, interactions with mathematical physics, where matrix factorizations appear in quantum field theory, have provided various new insights. I will explain how matrix factorizations can be studied in the context of noncommutative algebraic geometry based on differential graded categories. We will see the relevance of the noncommutative analogue of de Rham cohomology in terms of classical singularity theory. Finally, I will outline how the Kapustin-Li formula for the noncommutative Serre duality pairing (originally computed via path integral methods) can be mathematically explained using a combination of homological perturbation theory and local duality.
Partly based on joint work with Daniel Murfet.
Alternating minimal energy methods for linear systems in higher dimensions.
Abstract
We propose a new algorithm for the approximate solution of large-scale high-dimensional tensor-structured linear systems. It can be applied to high-dimensional differential equations, which allow a low-parametric approximation of the multilevel matrix, right-hand side and solution in a tensor product format. We apply standard one-site tensor optimisation algorithm (ALS), but expand the tensor manifolds using the classical iterative schemes (e.g. steepest descent). We obtain the rank--adaptive algorithm with the theoretical convergence estimate not worse than the one of the steepest descent, and fast practical convergence, comparable or even better than the convergence of more expensive two-site optimisation algorithm (DMRG).
The method is successfully applied for a high--dimensional problem of quantum chemistry, namely the NMR simulation of a large peptide.
This is a joint work with S.Dolgov (Max-Planck Institute, Leipzig, Germany), supported by RFBR and EPSRC grants.
Keywords: high--dimensional problems, tensor train format, ALS, DMRG, steepest descent, convergence rate, superfast algorithms, NMR.
Noncommutative algebraic geometry of isolated hypersurface singularities I
Abstract
The concept of a matrix factorization was originally introduced by Eisenbud to study syzygies over local rings of singular hypersurfaces. More recently, interactions with mathematical physics, where matrix factorizations appear in quantum field theory, have provided various new insights. I will explain how matrix factorizations can be studied in the context of noncommutative algebraic geometry based on differential graded categories. We will see the relevance of the noncommutative analogue of de Rham cohomology in terms of classical singularity theory. Finally, I will outline how the Kapustin-Li formula for the noncommutative Serre duality pairing (originally computed via path integral methods) can be mathematically explained using a combination of homological perturbation theory and local duality.
Partly based on joint work with Daniel Murfet.
Existence and numerical analysis for incompressible chemically reacting fluids with $p(c(x))$-$\Delta$ structure
Abstract
We study a system of partial differential equations describing a steady flow of an incompressible generalized Newtonian fluid, wherein the Cauchy stress depends on concentration. Namely, we consider a coupled system of the generalized Navier-Stokes equations (viscosity of power-law type with concentration dependent power index) and convection-diffusion equation with non-linear diffusivity. We focus on the existence analysis of a weak solution for certain class of models by using a generalization of the monotone operator theory which fits into the framework of generalized Sobolev spaces with variable exponent (class of Sobolev-Orlicz spaces). Such results is then adapted for a suitable FEM approximation, for which the main tool of proof is a generalization of the Lipschitz approximation method.
Singularly perturbed hyperbolic systems
Abstract
In the first JAM seminar of 2013/2014, I will discuss the topic of singular perturbed hyperbolic systems of PDE arising in physical phenomena, particularly the St Venant equations of shallow water theory. Using a mixture of analytical and numerical techniques, I will demonstrate the dangers of approximating the dynamics of a system by the equations obtained upon taking a singular limit $\epsilon\rightarrow 0$ and furthermore how the dynamics of the system change when the parameter $\epsilon$ is taken to be small but finite. Problems of this type are ubiquitous in the physical sciences, and I intend to motivate another example arising in elastoplasticity, the subject of my DPhil study.
\\
\\
Note: This seminar is not intended for faculty members, and is available only to current undergraduate and graduate students.
11:00
Finding Galois Representations
Abstract
It is well known that one can attach Galois representations to certain modular forms, it is natural to ask how one might generalise this to produce more Galois representations. One such approach, due to Gross, defines objects called algebraic modular forms on certain types of reductive groups and then conjectures the existence of Galois representations attached to them. In this talk I will outline how for a particular choice of reductive group the conjectured Galois representations exist and are the classical modular Galois representations, thus providing some evidence that this is a good generalisation to consider.
Local minimization, Variational evolution and Gamma-convergence
Abstract
The description of the behaviour of local minima or evolution problems for families of energies cannot in general be deduced from their Gamma-limit, which is a concept designed to treat static global minimum problems. Nevertheless this can be taken as a starting point. Various issues that have been addressed are:
Find criteria that ensure the convergence of local minimizers and critical points. In case this does not occur then modify the Gamma-limit in order to match this requirement. We note that in this way we `correct' some limit theories, finding (or `validating') other ones present in the literature;
Modify the concept of local minimizer, so that it may be more `compatible' with the process of Gamma-limit;
Treat evolution problems for energies with many local minima obtained by a time-discrete scheme introducing the notion of `minimizing movements along a sequence of functionals'. In this case the minimizing movement of the Gamma-limit can always be obtained by a choice of the space- and time-scale, but more interesting behaviors can be obtained at a critical ratio between them. In many cases a `critical scale' can be computed and an effective motion, from which all other minimizing movements are obtained by scaling.
Relate minimizing movements to general variational evolution results, in particular recent theories of quasistatic motion and gradient flow in metric spaces.
I will illustrate some of these points.
Learning an evolving system using Rough Paths Theory
Abstract
''Regression analysis aims to use observational data from multiple observations to develop a functional relationship relating explanatory variables to response variables, which is important for much of modern statistics, and econometrics, and also the field of machine learning. In this paper, we consider the special case where the explanatory variable is a stream of information, and the response is also potentially a stream. We provide an approach based on identifying carefully chosen features of the stream which allows linear regression to be used to characterise the functional relationship between explanatory variables and the conditional distribution of the response; the methods used to develop and justify this approach, such as the signature of a stream and the shue product of tensors, are standard tools in the theory of rough paths and seem appropriate in this context of regression as well and provide a surprisingly unified and non-parametric approach.''
Asymptotic independence of three statistics of the maximal increments of random walks and Levy processes
Abstract
14:00
Integrability and instability in AdS/CFT
Abstract
Closed End Bond Funds
Abstract
The performance of the shares of a closed end bond fund is based on the returns of an underlying portfolio of bonds. The returns on closed end bond funds are typically higher than those of comparable open ended bond funds and this result is attributed to the use of leverage by closed end bond funds. This talk develops a simple model to assess the impact of leverage on the expected return and riskiness of a closed end bond fund. We illustrate the model with some examples
Periodicity of finite-dimensional algebras
Abstract
Let $A$ be a finite-dimensional $K$-algebra over an algebraically closed field $K$. Denote by $\Omega_A$ the syzygy operator on the category $\mod A$ of finite-dimensional right $A$-modules, which assigns to a module $M$ in $\mod A$ the kernel $\Omega_A(M)$ of a minimal projective cover $P_A(M) \to M$ of $M$ in $\mod A$. A module $M$ in $\mod A$ is said to be periodic if $\Omega_A^n(M) \cong M$ for some $n \geq 1$. Then $A$ is said to be a periodic algebra if $A$ is periodic in the module category $\mod A^e$ of the enveloping algebra $A^e = A^{\op} \otimes_K A$. The periodic algebras $A$ are self-injective and their module categories $\mod A$ are periodic (all modules in $\mod A$ without projective direct summands are periodic). The periodicity of an algebra $A$ is related with periodicity of its Hochschild cohomology algebra $HH^{*}(A)$ and is invariant under equivalences of the derived categories $D^b(\mod A)$ of bounded complexes over $\mod A$. One of the exciting open problems in the representation theory of self-injective algebras is to determine the Morita equivalence classes of periodic algebras.
We will present the current stage of the solution of this problem and exhibit prominent classes of periodic algebras.
On symmetric quotients of symmetric algebras
Abstract
We investigate symmetric quotient algebras of symmetric algebras,
with an emphasis on finite group algebras over a complete discrete
valuation ring R with residue field of positive characteristic p. Using elementary methods, we show that if an
ordinary irreducible character of a finite group gives
rise to a symmetric quotient over R which is not a matrix algebra,
then the decomposition numbers of the row labelled by the character are
all divisible by p. In a different direction, we show that if is P is a finite
p-group with a cyclic normal subgroup of index p, then every ordinary irreducible character of P gives rise to a
symmetric quotient of RP. This is joint work with Shigeo Koshitani and Markus Linckelmann.
Exact representations of Susceptible-Infectious-Removed (SIR) epidemic dynamics on networks
Abstract
The majority of epidemic models fall into two categories: 1) deterministic models represented by differential equations and 2) stochastic models which can be evaluated by simulation. In this presentation I will discuss the precise connection between these models. Until recently, exact correspondence was only established in situations exhibiting large degrees of symmetry or for infinite populations.
I will consider SIR dynamics on finite static contact networks. I will give an overview of two provably exact deterministic representations of the underlying stochastic model for tree-like networks. These are the message passing description of Karrer and Newman and my pair-based moment closure representation. I will discuss relationship between the two representations and the relative merits of both.
Affine cellularity of Khovanov-Lauda-Rouquier algebras in finite type A
Abstract
We explain how Khovanov-Lauda-Rouquier algebras in finite type A are affine cellular in the sense of Koenig and Xi. In particular this reproves finiteness of their global dimension. This is joint work with Alexander Kleshchev and Joseph Loubert.
Examples of support varieties for Hopf algebras with noncommutative tensor products
Abstract
This talk is about some recent joint work with Sarah Witherspoon. The representations of some finite dimensional Hopf algebras have curious behaviour: Nonprojective modules may have projective tensor powers, and the variety of a tensor product of modules may not be contained in the intersection of their varieties. I shall describe a family of examples of such Hopf algebras and their modules, and the classification of left, right, and two-sided ideals in their stable module categories.
On a question of Abraham Robinson's
Abstract
Coxeter groups, path algebras and preprojective algebras
Abstract
To a finite connected acyclic quiver Q there is associated a path algebra kQ, for an algebraically closed field k, a Coxeter group W and a preprojective algebra. We discuss a bijection between elements of the Coxeter group W and the cofinite quotient closed subcategories of mod kQ, obtained by using the preprojective algebra. This is taken from a paper with Oppermann and Thomas. We also include a related result by Mizuno in the case when Q is Dynkin.
Quillen's determinant line bundle
Abstract
In the talk we will discuss Quillen's construction of a determinant line bundle associated to a family of Cauchy-Riemann operators. I will first of all try to convince you why this is a cool thing and mention some of the many different applications. The bulk of the talk will be focused on constructing the line bundle, its hermitian metric and calculating the curvature. Hopefully a talk accessible to many.