Fri, 21 May 2010 10:00 -
Fri, 28 May 2010 10:00
Gibson 1st Floor SR

Lecture Series: Scaling Dynamics in Aggregation Models

Professor Bob Pego
(Carnegie Mellon University)
Abstract

Clustering phenomena occur in numerous areas of science.

This series of lectures will discuss:

(i) basic kinetic models for clustering- Smoluchowski's coagulation equation, random shock clustering, ballistic aggregation, domain-wall merging;

(ii) Criteria for approach to self-similarity- role of regular variation;

(iii) The scaling attractor and its measure representation.

A particular theme is the use of methods and insights from probability in tandem with dynamical systems theory. In particular there is a

close analogy of scaling dynamics with the stable laws of probability and infinite divisibility.

Thu, 20 May 2010
17:00

The Changing Risks of Government Bonds

John Campbell
(Harvard University)
Abstract

In the Said Business School

The covariance between nominal bonds and stocks has varied considerably over recent decades and has even switched sign. It has been predominantly positive in periods such as the late 1970s and early 1980s when the economy has experienced supply shocks and the central bank has lacked credibility. It has been predominantly negative in periods such as the 2000s when investors have feared weak aggregate demand and deflation. This lecture discusses the implications of changing bond risk for the shape of the yield curve, the risk premia on bonds, and the relative pricing of nominal and inflation-indexed bonds.

Thu, 20 May 2010
17:00
L3

Semilattices, Domains, and Computability

Dana Scott
(Carnegie Mellon/Oxford)
Abstract

As everyone knows, one popular notion of a (Scott-Ersov) domain is defined as a bounded complete algebraic cpo. These are closely related to algebraic lattices: (i) A domain becomes an algebraic lattice with the adjunction of an (isolated) top element. (ii) Every non-empty Scott-closed subset of an algebraic lattice is a domain. Moreover, the isolated (= compact) elements of an algebraic lattice form a semilattice (under join). This semilattice has a zero element, and, provided the top element is isolated, it also has a unit element. The algebraic lattice itself may be regarded as the ideal completion of the semilattice of isolated elements. This is all well known. What is not so clear is that there is an easy-to-construct domain of countable semilattices giving isomorphic copies of all countably based domains. This approach seems to have advantages over both the so-called "information systems" or more abstract lattice formulations, and it makes definitions of solutions to domain equations very elementary to justify. The "domain of domains" also has a natural computable structure

Thu, 20 May 2010

16:30 - 17:30
L2

Change of Mind: Optical Control of Neural Circuits

Gero Miesenboeck
(Oxford)
Abstract

An emerging set of methods enables an experimental dialogue with biological systems composed of many interacting cell types---in particular, with neural circuits in the brain. These methods are sometimes called “optogenetic” because they employ light-responsive proteins (“opto-“) encoded in DNA (“-genetic”). Optogenetic devices can be introduced into tissues or whole organisms by genetic manipulation and be expressed in anatomically or functionally defined groups of cells. Two kinds of devices perform complementary functions: light-driven actuators control electrochemical signals; light-emitting sensors report them. Actuators pose questions by delivering targeted perturbations; sensors (and other measurements) signal answers. These catechisms are beginning to yield previously unattainable insight into the organization of neural circuits, the regulation of their collective dynamics, and the causal relationships between cellular activity patterns and behavior.

Thu, 20 May 2010

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Numerical Methods for Monge-Kantorovich Transportation Problems

Dr Jan Van lent
(UWE Bristol)
Abstract

In the eighteenth century Gaspard Monge considered the problem of finding the best way of moving a pile of material from one site to another. This optimal transport problem has many applications such as mesh generation, moving mesh methods, image registration, image morphing, optical design, cartograms, probability theory, etc. The solution to an optimal transport problem can be found by solving the Monge-Amp\`{e}re equation, a highly nonlinear second order elliptic partial differential equation. Leonid Kantorovich, however, showed that it is possible to analyse optimal transport problems in a framework that naturally leads to a linear programming formulation. In recent years several efficient methods have been proposed for solving the Monge-Amp\`{e}re equation. For the linear programming problem, standard methods do not exploit the special properties of the solution and require a number of operations that is quadratic or even cubic in the number of points in the discretisation. In this talk I will discuss techniques that can be used to obtain more efficient methods.

Joint work with Chris Budd (University of Bath).

Thu, 20 May 2010

12:30 - 13:30
Gibson 1st Floor SR

Profile decompositions and applications to Navier-Stokes

Gabriel Koch
(OxPDE, University of Oxford)
Abstract

In this talk, we describe new profile decompositions for bounded sequences in Banach spaces of functions defined on $\mathbb{R}^d$. In particular, for "critical spaces" of initial data for the Navier-Stokes equations, we show how these can give rise to new proofs of recent regularity theorems such as those found in the works of Escauriaza-Seregin-Sverak and Rusin-Sverak. We give an update on the state of the former and a new proof plus new results in the spirit of the latter. The new profile decompositions are constructed using wavelet theory following a method of Jaffard.

Thu, 20 May 2010

12:00 - 13:00
SR1

Poisson quasi-Nijenhuis manifolds with background

Flavio Cordeiro
(Oxford)
Abstract

\paragraph{} Poisson quasi-Nijenhuis structures with background (PqNb structures) were recently defined and are one of the most general structures within Poisson geometry. On one hand they generalize the structures of Poisson-Nijenhuis type, which in particular contain the Poisson structures themselves. On the other hand they generalize the (twisted) generalized complex structures defined some years ago by Hitchin and Gualtieri. Moreover, PqNb manifolds were found to be appropriate target manifolds for sigma models if one wishes to incorporate certain physical features in the model. All these three reasons put the PqNb structures as a new and general object that deserves to be studied in its own right.

\paragraph{} I will start the talk by introducing all the concepts necessary for defining PqNb structures, making this talk completely self-contained. After a brief recall on Poisson structures, I will define Poisson-Nijenhuis and Poisson quasi-Nijenhuis manifolds and then move on to a brief presentation on the basics of generalized complex geometry. The PqNb structures then arise as the general structure which incorporates all the structures referred above. In the second part of the talk, I will define gauge transformations of PqNb structures and show how one can use this concept to construct examples of such structures. This material corresponds to part of the article arXiv:0912.0688v1 [math.DG].\\

\paragraph{} Also, if time permits, I will shortly discuss the appearing of PqNb manifolds as target manifolds of sigma models.

Wed, 19 May 2010

11:30 - 12:30
ChCh, Tom Gate, Room 2

A puzzle and a game

Owen Cotton-Barratt
(University of Oxford)
Tue, 18 May 2010

16:30 - 17:30
SR2

Phase boundary fluctuation and growth models

Alan Hammond
(University of Oxford)
Abstract

The Wulff droplet arises by conditioning a spin system in a dominant

phase to have an excess of signs of opposite type. These gather

together to form a droplet, with a macroscopic Wulff profile, a

solution to an isoperimetric problem.

I will discuss recent work proving that the phase boundary that

delimits the signs of opposite type has a characteristic scale, both

at the level of exponents and their logarithmic corrections.

This behaviour is expected to be shared by a broad class of stochastic

interface models in the Kardar-Parisi-Zhang class. Universal

distributions such as Tracy-Widom arise in this class, for example, as

the maximum behaviour of repulsive particle systems. time permitting,

I will explain how probabilistic resampling ideas employed in spin

systems may help to develop a qualitative understanding of the random

mechanisms at work in the KPZ class.

Tue, 18 May 2010

16:00 - 17:00
SR1

Quasi-trees

David Hume
(Oxford)
Tue, 18 May 2010

15:45 - 16:45
L3

(HoRSe seminar) ''Stability conditions on the local projective plane and $\Gamma_1(3)$-action II'

Emanuele Macri
(Utah)
Abstract

We report on joint work with Arend Bayer on the space of stability conditions for the canonical bundle on the projective plane.

We will describe a connected component of this space, generalizing and completing a previous construction of Bridgeland.

In particular, we will see how this space is related to classical results of Drezet-Le Potier on stable vector bundles on the projective plane. Using this, we can determine the group of autoequivalences of the derived category. As a consequence, we can identify a $\Gamma_1(3)$-action on the space of stability conditions, which will give a global picture of mirror symmetry for this example.

In the second hour we will give some details on the proof of the main theorem.

Tue, 18 May 2010

14:30 - 15:30
L3

Trading 'tween crossings, crosscaps, and handles

Dan Archdeacon
(University of Vermont)
Abstract

Given a graph we want to draw it in the plane; well we *want* to draw it in the plane, but sometimes we just can't. So we resort to various compromises. Sometimes we add crossings and try to minimize the crossings. Sometimes we add handles and try to minimize the number of handles. Sometimes we add crosscaps and try to minimize the number of crosscaps.

Sometimes we mix these parameters: add a given number of handles (or crosscaps) and try to minimize the number of crossings on that surface. What if we are willing to trade: say adding a handle to reduce the number of crossings? What can be said about the relative value of such a trade? Can we then add a second handle to get an even greater reduction in crossings? If so, why didn't we trade the second handle in the first place? What about a third handle?

The crossing sequence cr_1, cr_2, ... , cr_i, ... has terms the minimum number of crossings over all drawings of G on a sphere with i handles attached. The non-orientable crossing sequence is defined similarly. In this talk we discuss these crossing sequences.

By Dan Archdeacon, Paul Bonnington, Jozef Siran, and citing works of others.

Tue, 18 May 2010

14:00 - 15:00
SR1

(HoRSe seminar) 'Stability conditions on the local projective plane and $\Gamma_1(3)$-action I'

Emanuele Macri
(Utah)
Abstract

We report on joint work with Arend Bayer on the space of stability conditions for the canonical bundle on the projective plane.

We will describe a connected component of this space, generalizing and completing a previous construction of Bridgeland.

In particular, we will see how this space is related to classical results of Drezet-Le Potier on stable vector bundles on the projective plane. Using this, we can determine the group of autoequivalences of the derived category. As a consequence, we can identify a $\Gamma_1(3)$-action on the space of stability conditions, which will give a global picture of mirror symmetry for this example.

In the second hour we will give some details on the proof of the main theorem.

Mon, 17 May 2010

16:00 - 17:00
SR1

Modularity and Galois representations

Frank Gounelas
(University of Oxford)
Abstract

This talk is the second in a series of an elementary introduction to the ideas unifying elliptic curves, modular forms and Galois representations. I will discuss what it means for an elliptic curve to be modular and what type of representations one associates to such objects.

Mon, 17 May 2010
15:45
L3

Link Invariants Given by Homotopy Groups

Wu Jie, Singapore
(Singapore)
Abstract

In this talk, we introduce the (general) homotopy groups of spheres as link invariants for Brunnian-type links through the investigations on the intersection subgroup of the normal closures of the meridians of strongly nonsplittable links. The homotopy groups measure the difference between the intersection subgroup and symmetric commutator subgroup of the normal closures of the meridians and give the invariants of the links obtained in this way. Moreover all homotopy groups of any dimensional spheres can be obtained from the geometric Massey products on certain links.

Mon, 17 May 2010

12:00 - 13:00
L3

Aspects of heterotic Calabi-Yau compactifications

James Gray
(Oxford)
Abstract
I will discuss various aspects of Calabi-Yau compactifications appropriate for use in models of string phenomenology. Topics covered will include transitions between and deformations of bundles as well as consequences of stability walls for phenomenology.
Fri, 14 May 2010
16:30
L2

Convergence of renormalization

Professor Artur Avila
(IMPA)
Abstract

Since the work of Feigenbaum and Coullet-Tresser on universality in the period doubling bifurcation, it is been understood that crucial features of unimodal (one-dimensional) dynamics depend on the behavior of a renormalization (and infinite dimensional) dynamical system. While the initial analysis of renormalization was mostly focused on the proof of existence of hyperbolic fixed points, Sullivan was the first to address more global aspects, starting a program to prove that the renormalization operator has a uniformly hyperbolic (hence chaotic) attractor. Key to this program is the proof of exponential convergence of renormalization along suitable ``deformation classes'' of the complexified dynamical system. Subsequent works of McMullen and Lyubich have addressed many important cases, mostly by showing that some fine geometric characteristics of the complex dynamics imply exponential convergence.

We will describe recent work (joint with Lyubich) which moves the focus to the abstract analysis of holomorphic iteration in deformation spaces. It shows that exponential convergence does follow from rougher aspects of the complex dynamics (corresponding to precompactness features of the renormalization dynamics), which enables us to conclude exponential convergence in all cases.

Fri, 14 May 2010
14:15
DH 1st floor SR

Hybrid Switching Diffusions and Applications to Stochastic Controls

George Yin
(Wayne State)
Abstract

In this talk, we report some of our recent work on hybrid switching diffusions in which continuous dynamics and discrete events coexist. Motivational examples in singular perturbed Markovian systems, manufacturing, and financial engineering will be mentioned. After presenting criteria for recurrence and ergodicity, we consider numerical methods for controlled switching diffusions and related game problems. Rates of convergence of Markov chain approximation methods will also be studied.

Fri, 14 May 2010

11:45 - 13:00
DH 1st floor SR

OCIAM internal seminar

Andrew Stewart and Trevor Wood
(OCIAM Graduate Students)
Abstract

Andrew Stewart -

The role of the complete Coriolis force in ocean currents that cross the equator

Large scale motions in the atmosphere and ocean are dominated by the Coriolis force due to the Earth's rotation. This tends to prevent fluid crossing the equator from one hemisphere to the other. We investigate the flow of a deep ocean current, the Antarctic Bottom Water, across the equator using a shallow water model that includes the Earth's complete Coriolis force. By contrast, most theoretical models of the atmosphere and ocean use the so-called traditional approximation that neglects the component of the Coriolis force associated with the locally horizontal component of the Earth's rotation vector. Using a combination of analytical and numerical techniques, we show that the cross-equatorial transport of the Antarctic Bottom Water may be substantially influenced by the interaction of the complete Coriolis force with bottom topography.

Thu, 13 May 2010

16:30 - 17:30
DH 1st floor SR

Delay Differential Equations in Action

Thomas Erneux
(Universite Libre de Bruxelles)
Abstract

In the first part of my presentation, I plan to review several applications modelled by delay differential equations (DDEs) starting from familiar examples such as traffic flow problems to physiology and industrial problems. Although delay differential equations have the reputation to be difficult mathematical problems, there is a renewed interest for both old and new problems modelled by DDEs. In the second part of my talk, I’ll emphasize the need of developing asymptotic tools for DDEs in order to guide our numerical simulations and help our physical understanding. I illustrate these ideas by considering the response of optical optoelectronic oscillators that have been studied both experimentally and numerically.

Thu, 13 May 2010
16:00
L3

Torsion Points on Fibered Powers of an Elliptic Surface

Philip Habegger - (JOINT WITH NUMBER THEORY SEMINAR)
(ETH Zurich)
Abstract

Jointly with Number Theory

Consider a family of abelian varieties whose base is an algebraic variety. The union of all torsion groups over all fibers of the family will be called the set of torsion points of the family. If the base variety is a point then the family is just an abelian variety.

In this case the Manin-Mumford Conjecture, a theorem of Raynaud, implies that a subvariety of the abelian variety contains a Zariski dense set of torsion points if and only if it is itself essentially an abelian subvariety. This talk is on possible extensions to certain families where the base is a curve. Conjectures of André and Pink suggest considering "special points": these are torsion points whose corresponding fibers satisfy an additional arithmetic property. One possible property is for the fiber to have complex multiplication; another is for the fiber to be isogenous to an abelian variety fixed in advance.

We discuss some new results on the distribution of such "special points"

on the subvarieties of certain families of abelian varieties. One important aspect of the proof is the interplay of two height functions.

I will give a brief introduction to the theory of heights in the talk.

Thu, 13 May 2010

14:00 - 15:00
3WS SR

RBF collocation methods for delayed differential equations

Dr Francisco Bernal
(OCCAM, University of Oxford)
Abstract

Meshless (or meshfree) methods are a relatively new numerical approach for the solution of ordinary- and partial differential equations. They offer the geometrical flexibility of finite elements but without requiring connectivity from the discretization support (ie a mesh). Meshless methods based on the collocation of radial basis functions (RBF methods) are particularly easy to code, and have a number of theoretical advantages as well as practical drawbacks. In this talk, an adaptive RBF scheme is presented for a novel application, namely the solution of (a rather broad class of) delayed- and neutral differential equations.

Thu, 13 May 2010
13:00
DH 1st floor SR

Investor Activeness and Investment Performance

Jose Martinez
(SBS)
Abstract

Using a large panel data set of Swedish pension savers (75,000 investors, daily portfolios 2000-2008) we show that active investors outperform inactive investors and that there is a causal effect of fund switches on performance. The higher performance is earned not by market timing, but by dynamic fund picking (within the same asset class). While activity is positive for the individual investor, there are indications that it generates costs for other investors.

Thu, 13 May 2010

12:30 - 13:30
Gibson 1st Floor SR

Eigenfunction Expansion Solutions of the Linear Viscoelastic Wave Equation

David Al-Attar
(Department of Earth Sciences, University of Oxford)
Abstract

In this talk we discuss the solution of the elastodynamic

equations in a bounded domain with hereditary-type linear

viscoelastic constitutive relation. Existence, uniqueness, and

regularity of solutions to this problem is demonstrated

for those viscoelastic relaxation tensors satisfying the condition

of being completely monotone. We then consider the non-self-adjoint

and non-linear eigenvalue problem associated with the

frequency-domain form of the elastodynamic equations, and show how

the time-domain solution of the equations can be expressed in

terms of an eigenfunction expansion.

Thu, 13 May 2010

12:00 - 13:00
SR1

Moduli of sheaves and quiver sheaves

Vicky Hoskins
(Oxford)
Abstract

A moduli problem in algebraic geometry is essentially a classification problem, I will introduce this notion and define what it means for a scheme to be a fine (or coarse) moduli space. Then as an example I will discuss the classification of coherent sheaves on a complex projective scheme up to isomorphism using a method due to Alvarez-Consul and King. The key idea is to 'embed' the moduli problem of sheaves into the moduli problem of quiver representations in the category of vector spaces and then use King's moduli spaces for quiver representations. Finally if time permits I will discuss recent work of Alvarez-Consul on moduli of quiver sheaves; that is, representations of quivers in the category of coherent sheaves.

Wed, 12 May 2010
17:00
L2

The extensive correspondence of John Wallis (1616–1703)

Philip Beeley
Abstract

What do historians of mathematics do? What sort of questions do they ask? What kinds of sources do they use? This series of four informal lectures will demonstrate some of the research on history of mathematics currently being done in Oxford. The subjects range from the late Renaissance mathematician Thomas Harriot (who studied at Oriel in 1577) to the varied and rapidly developing mathematics of the seventeenth century (as seen through the eyes of Savilian Professor John Wallis, and others) to the emergence of a new kind of algebra in Paris around 1830 in the work of the twenty-year old Évariste Galois.

Each lecture will last about 40 minutes, leaving time for questions and discussion. No previous knowledge is required: the lectures are open to anyone from the department or elsewhere, from undergraduates upwards.

Wed, 12 May 2010

11:30 - 12:30
ChCh, Tom Gate, Room 2

The Grigorchuk Group

Elisabeth Fink
(University of Oxford)
Abstract

I'll start with the definition of the first Grigorchuk group as an automorphism group on a binary tree. After that I give a short overview about what growth means, and what kinds of growth we know. On this occasion I will mention a few groups that have each kind of growth and also outline what the 'Gap Problem' was. Having explained this I will prove - or depending on the time sketch - why this Grigorchuk group has intermediate growth. Depending on the time I will maybe also mention one or two open problems concerning growth.

Tue, 11 May 2010

16:00 - 17:00
SR1

The Asymptotic Cone of a Symmetric Space is a Euclidean Building

Andrew Sale
(Oxford)
Abstract

I will introduce Symmetric spaces via a result of Kleiner & Leeb, comparing the axioms in their definition of a Euclidean building with properties of symmetric spaces of noncompact type.

Tue, 11 May 2010

15:45 - 16:45
L3

Symplectic homology of 4-dimensional Weinstein manifolds and Legendrian homology of links

Tobias Ekholm
(Uppsala)
Abstract

We show how to compute the symplectic homology of a 4-dimensional Weinstein manifold from a diagram of the Legendrian link which is the attaching locus of its 2-handles. The computation uses a combination of a generalization of Chekanov's description of the Legendrian homology of links in standard contact 3-space, where the ambient contact manifold is replaced by a connected sum of $S^1\times S^2$'s, and recent results on the behaviour of holomorphic curve invariants under Legendrian surgery.

Tue, 11 May 2010

12:00 - 13:00
L3

Axions, Inflation and the Anthropic Principle

Katherine Mack (Cambridge)
Abstract

The QCD axion is the leading solution to the strong-CP problem, a

dark matter candidate, and a possible result of string theory

compactifications. However, for axions produced before inflation, high

symmetry-breaking scales (such as those favored in string-theoretic axion

models) are ruled out by cosmological constraints unless both the axion

misalignment angle and the inflationary Hubble scale are extremely

fine-tuned. I will discuss how attempting to accommodate a high-scale axion

in inflationary cosmology leads to a fine-tuning problem that is worse than

the strong-CP problem the axion was originally invented to solve, and how

this problem is exacerbated when additional axion-like fields from string

theory are taken into account. This problem remains unresolved by anthropic

selection arguments commonly applied to the high-scale axion scenario.

Mon, 10 May 2010

17:00 - 18:00
Gibson 1st Floor SR

Spectral stability for solitary water waves

Robert Pego
(Carnegie Mellon University)
Abstract
I will recount progress regarding the robustness of solitary waves in
nonintegrable Hamiltonian systems such as FPU lattices, and discuss
a proof (with Shu-Ming Sun) of spectral stability of small
solitary waves for the 2D Euler equations for water of finite depth
without surface tension.