Barycentric coordinates and transfinite interpolation
Abstract
Recent generalizations of barycentric coordinates to polygons and polyhedra, such as Wachspress and mean value coordinates, have been used to construct smooth mappings that are easier to compute than harmonic amd conformal mappings, and have been applied to curve and surface modelling.
We will summarize some of these developments and then discuss how these coordinates naturally lead to smooth transfinite interpolants over curved domains, and how one can also match derivative data on the domain boundary.
New Results on Travelling Waves in Hamiltonian Lattices
Abstract
Travelling waves are highly symmetric solutions to the Hamiltonian lattice equation and are determined by nonlinear advance-delay differential equations. They provide much insight into the microscopic dynamics and are moreover fundamental building blocks for macroscopic
lattice theories.
In this talk we concentrate on travelling waves in convex FPU chains and study both periodic waves (wave trains) and homoclinic waves (solitons). We present a new existence proof which combines variational and dynamical concepts.
In particular, we improve the known results by showing that the profile functions are unimodal and even.
Finally, we study the complete localization of wave trains and address additional complications that arise for heteroclinic waves (fronts).(joint work with Jens D.M. Rademacher, CWI Amsterdam)
Decomposition Theorem, Orthogonality principle and Localization principle - the three components of the sufficiency proof (III)
On the Extraction of Physical Content from Asymptotically Flat Space-times Metrics
Abstract
A major issue in general relativity, from its earliest days to the
present, is how to extract physical information from any solution or
class of solutions to the Einstein equations. Though certain
information can be obtained for arbitrary solutions, e.g., via geodesic
deviation, in general, because of the coordinate freedom, it is often
hard or impossible to do. Most of the time information is found from
special conditions, e.g., degenerate principle null vectors, weak
fields close to Minkowski space (using coordinates close to Minkowski
coordinates) or from solutions that have symmetries or approximate
symmetries. In the present work we will be concerned with
asymptotically flat space times where the approximate symmetry is the
Bondi-Metzner-Sachs (BMS) group. For these spaces the Bondi
four-momentum vector and its evolution, found from the Weyl tensor at
infinity, describes the total energy-momentum of the interior source
and the energy-momentum radiated. By generalizing certain structures
from algebraically special metrics, by generalizing the Kerr and the
charged-Kerr metric and finally by defining (at null infinity) the
complex center of mass (the real center of mass plus 'i' times the
angular momentum) with its transformation properties, a large variety
of physical identifications can be made. These include an auxiliary
Minkowski space viewed from infinity, kinematic meaning to the Bondi
momentum, dynamical equations of motion for the center of mass, a
geometrically defined spin angular momentum and a conservation law with
flux for total angular momentum.
Decomposition Theorem, Orthogonality principle and Localization principle - the three components of the sufficiency proof (II)
The analysis of Willmore Surfaces
Abstract
The Willmore Functional for surfaces has been introduced for the first time almost one century ago in the framework of conformal geometry (though it's one dimensional version already appears in thework of Daniel Bernouilli in the XVIII-th century). Maybe because of its simplicity and the depth of its mathematical relevance, it has since then played a significant role in various fields of sciences and technology such as cell biology, non-linear elasticity, general relativity...optical design...etc.
Critical points to the Willmore Functional are called Willmore Surfaces. They satisfy the so called Willmore Equations introduced originally by Gerhard Thomsen in 1923 . This equation, despite the elegance of it's formulation, is very inappropriate for dealing with analysis questions such as regularity, compactness...etc. We will present a new formulation of the Willmore Euler-Lagrange equation and explain how this formulation, together with the Integrability by compensation theory, permit to solve fundamental analysis questions regarding this functional, which were untill now totally open.
Decomposition Theorem, Orthogonality principle and Localization principle - the three components of the sufficiency proof (I)
Abstract
In these talks I will explain the technical difficulties and the ways in which they were overcome.
Elastic Stability Workshop
Abstract
The workshop will address current issues related to the stability of solutions in nonlinear elasticity, including local energy minimizers, the stability of growing bodies, global existence for small data, bifurcation and continuation of solutions, and Saint-Venant’s principle.
Mixing Transitions and Oscillations in Low-Reynolds Number Viscoelastic Fluids
Abstract
In the past several years it has come to be appreciated that in low Reynolds number flow the nonlinearities provided by non-Newtonian stresses of a complex fluid can provide a richness of dynamical behaviors more commonly associated with high Reynolds number Newtonian flow. For example, experiments by V. Steinberg and collaborators have shown that dilute polymer suspensions being sheared in simple flow geometries can exhibit highly time dependent dynamics and show efficient mixing. The corresponding experiments using Newtonian fluids do not, and indeed cannot, show such nontrivial dynamics. To better understand these phenomena we study the Oldroyd-B viscoelastic model. We first explain the derivation of this system and its relation to more familiar systems of Newtonian fluids and solids and give some analytical results for small data perturbations. Next we study this and related models numerically for low-Reynolds number flows in two dimensions. For low Weissenberg number (an elasticity parameter), flows are "slaved" to the four-roll mill geometry of the fluid forcing. For sufficiently large Weissenberg number, such slaved solutions are unstable and under perturbation transit in time to a structurally dissimilar flow state dominated by a single large vortex, rather than four vortices of the four-roll mill state. The transition to this new state also leads to regions of well-mixed fluid and can show persistent oscillatory behavior with continued destruction and generation of smaller-scale vortices.
Sharp condition of global existence for energy critical wave equation
Characterization of generalized gradient Young measures in $W^{1,1}$ and $BV$
Abstract
This talk first introduces generalized Young measures (or DiPerna/Majda measures) in an $L^1$-setting. This extension to classical Young measures is able to quantitatively account for both oscillation and concentration phenomena in generating sequences.
We establish several fundamental properties like compactness and representation of nonlinear integral functionals and present some examples. Then, generalized Young measures generated by $W^{1,1}$- and $BV$-gradients are more closely examined and several tools to manipulate them (including averaging and approximation) are presented.
Finally, we address the question of characterizing the set of generalized Young measures generated by gradients in the spirit of the Kinderlehrer-Pedregal Theorem.
This is joint work with Jan Kristensen.
Quiver representations and the enumeration of graphs
Abstract
We show that the leading terms of the number of absolutely indecomposable representations of a quiver over a finite field are related to counting graphs. This is joint work with Geir Helleloid.
A Posteriori Error Estimates for PDE Constrained Optimization with Pointwise State Constraints
Abstract
The talk will be followed by an informal tea in the Gibson Building seminar room giving an opportunity to chat with Winnifried Wollner and Amit Acharya (our other current OxMOS visitor)
Non-periodic Γ-convergence
Abstract
Γ-convergence is a variational convergence on functionals. The explicit characterization of the integrand of the Γ-limit of sequences of integral functionals with periodic integrands is by now well known. Here we focus on the explicit characterization of the limit energy density of a sequence of functionals with non-periodic integrands. Such characterization is achieved in terms of the Young measure associated with relevant sequences of functions. Interesting examples are considered.
About yield surfaces of phase transformation for some shape memory alloys: duality and convexity. Application to fracture.
Abstract
Multiaxial mechanical proportional loadings on shape memory alloys undergoing phase transformation permit to determine the yield curve of phase transformation initiation in the stress space. We show how to transport this yield surface in the set of effective transformation strains of producted phase M. Two numerical applications are done concerning a Cu Al Be and a Ni Ti polycrystallines shape memory alloys. A special attention is devoted to establish a convexity criterium of these surfaces.
Moreover an application to the determination of the phase transformation surface around the crack tip for SMA fracture is performed.
At last some datas are given concerning the SMA damping behavior
AUTHORS
Christian Lexcellent, Rachid Laydi, Emmanuel Foltete, Manuel collet and Frédéric Thiebaud
FEMTO-ST Département de Mécanique Appliquée Université de Franche Comte Besançon France
14:15
The space of graphs in Euclidean space.
Abstract
A graph in R^n is a closed subset that locally looks like R (edges) or like a wedge of half intervals (vertices). I will describe a topology on the space of all such graphs and determine its homotopy type. This is one step in determining the homology of Aut(F_n), the automorphism group of a free group, in the limit where n goes to infinity.
Isomorphism Types of Maximal Cofinitary Groups
Abstract
Cofinitary groups are subgroups of the symmetric group on the natural numbers
(elements are bijections from the natural numbers to the natural numbers, and
the operation is composition) in which all elements other than the identity
have at most finitely many fixed points. We will give a motivation for the
question of which isomorphism types are possible for maximal cofinitary
groups. And explain some of the results we achieved so far.
Rethinking universal covers and fundamental groups in algebraic geometry
A kinetic formulation for Hamilton-Jacobi equations
On Monge-Ampere type equations with supplementary ellipticity
Abstract
We present a selection of recent results pertaining to Hessian
and Monge-Ampere equations, where the Hessian matrix is augmented by a
matrix valued lower order operator. Equations of this type arise in
conformal geometry, geometric optics and optimal transportation.In
particular we will discuss structure conditions, due to Ma,Wang and
myself, which imply the regularity of solutions.These conditions are a
refinement of a condition used originally by Pogorelev for general
equations of Monge-Ampere type in two variables and called strong
ellipticity by him.
11:00
2-dimensional extended Topological Quantum Field Theories and categorification
Abstract
A 2-dimensional Topological Quantum Field Theory (TQFT) is a symmetric monoidal functor from the category of 2-dimensional cobordisms to the category of vector spaces. A classic result states that 2d TQFTs are classified by commutative Frobenius algebras. I show how to extend this result to open-closed TQFTs using a class of 2-manifolds with corners, how to use the Moore-Segal relations in order to find a canonical form and a complete set of invariants for our cobordisms and how to classify open-closed TQFTs algebraically. Open-closed TQFTs can be used to find algebraic counterparts of Bar-Natan's topological extension of Khovanov homology from links to tangles and in order to get hold of the braided monoidal 2-category that governs this aspect of Khovanov homology. I also sketch what open-closed TQFTs reveal about the categorical ladder of combinatorial manifold invariants according to Crane and Frenkel.
references:
1] A. D. Lauda, H. Pfeiffer:
Open-closed strings: Two-dimensional extended TQFTs and Frobenius algebras,
Topology Appl. 155, No. 7 (2008) 623-666, arXiv:math/0510664
2] A. D. Lauda, H. Pfeiffer: State sum construction of two-dimensional open-closed Topological Quantum Field Theories,
J. Knot Th. Ramif. 16, No. 9 (2007) 1121-1163,arXiv:math/0602047
3] A. D. Lauda, H. Pfeiffer: Open-closed TQFTs extend Khovanov homology from links to tangles, J. Knot Th. Ramif., in press, arXiv:math/0606331.
Constructible Calabi-Yau categories and their motivic invariants
Lagrangian Mean Curvature Flow
Abstract
Mean curvature vector is the negative gradient of the area functional. Thus if we deform a submanifold along its mean curvature vector, which is called mean curvature flow (MCF), the area will decrease most rapidly. When the ambient manifold is Kahler-Einstein, being Lagrangian is preserved under MCF. It is thus very natural trying to construct special Lagrangian/ Lagrangian minimal through MCF. In this talk, I will make a brief introduction and report some of my recent works with my coauthors in this direction, which mainly concern the singularities of the flow.
Donaldson-Thomas and Gromov-Witten theory of Calabi-Yau orbifolds
Abstract
There are two basic theories of curve counting on Calabi-Yau threefolds. Donaldson-Thomas theory arises by considering curves as subschemes; Gromov-Witten theory arises by considering curves as the image of maps. Both theories can also be formulated for orbifolds. Let X be a dimension three Calabi-Yau orbifold and let
Y --> X be a Calabi-Yau resolution. The Gromov-Witten theories of X and Y are related by the Crepant Resolution Conjecture. The Gromov-Witten and Donaldson-Thomas theories of Y are related by the famous MNOP conjecture. In this talk I will (with some provisos) formulate the remaining equivalences: the crepant resolution conjecture in Donaldson-Thomas theory and the MNOP conjecture for orbifolds. I will discuss examples to illustrate and provide evidence for the conjectures.
15:15
Representations of positive real polynomials
Abstract
We consider finite sequences $h = (h_1, . . . h_s)$ of real polynomials in $X_1, . . . ,X_n$ and assume that
the semi-algebraic subset $S(h)$ of $R^n$ defined by $h1(a1, . . . , an) \leq 0$, . . . , $hs(a1, . . . , an) \leq 0$ is
bounded. We call $h$ (quadratically) archimedean if every real polynomial $f$, strictly positive on
$S(h)$, admits a representation
$f = \sigma_0 + h_1\sigma_1 + \cdots + h_s\sigma_s$
with each $\sigma_i$ being a sum of squares of real polynomials.
If every $h_i$ is linear, the sequence h is archimedean. In general, h need not be archimedean.
There exists an abstract valuation theoretic criterion for h to be archimedean. We are, however,
interested in an effective procedure to decide whether h is archimedean or not.
In dimension n = 2, E. Cabral has given an effective geometric procedure for this decision
problem. Recently, S. Wagner has proved decidability for all dimensions using among others
model theoretic tools like the Ax-Kochen-Ershov Theorem.
14:15
Informative Traders
Abstract
A modelling framework is introduced in which there is a small agent who is more susceptible to the flow of information in the market as compared to the general market participants. In this framework market participants have access to a stream of noisy information concerning the future returns of the asset, whereas an informative trader has access to an additional information source which is also obscured by further noise, which may be correlated with the market noise. The informative trader utilises the extraneous information source to seek statistical arbitrage opportunities, in exchange with accommodating the additional risk. The information content of the market concerning the value of the impending cash flow is represented by the mutual information of the asset price and the associated cash flow. The worthiness of the additional information source is then measured in terms of the difference of mutual information between market participants and the informative trader. This difference is shown to be strictly nonnegative for all parameter values in the model, when signal-to-noise ratio is known in advance. Trading strategies making use of the additional information are considered. (Talk is based on joint work with M.H.A. Davis (Imperial) & R.L. Friedman (Imperial & Royal Bank of Scotland).
16:30
16:00
Characterizing Z in Q with a universal-existential formula
Abstract
Refining Julia Robinson's 1949 work on the undecidability of the first order theory of Q, we prove that Z is definable in Q by a formula with 2 universal quantifiers followed by 7 existential quantifiers. It follows that there is no algorithm for deciding, given an algebraic family of Q-morphisms, whether there exists one that is surjective on rational points.
Tau function on moduli spaces of holomorphic differentials and on Hurwitz spaces and their applications
The immersed boundary method and simulations of liquid metal magnetohydrodynamics
An Introduction to the Birational Classification of Surfaces
Abstract
The birational classification of varieties is an interesting and ongoing problem in algebraic geometry. This talk aims to give an
overview of the progress made on this problem in the special case where the varieties considered are surfaces in projective space.
14:00