Tue, 21 Jan 2014

14:00 - 15:00
L5

Numerical solution of Hamilton—Jacobi—Bellman equations

Iain Smears
(University of Oxford)
Abstract

Hamilton—Jacobi—Bellman (HJB) equations are a class of fully nonlinear second-order partial differential equations (PDE) of elliptic or parabolic type that originate from Stochastic Optimal Control Theory. These PDE are fully nonlinear in the sense that the nonlinear terms include the second partial derivatives of the unknown solution; this strong nonlinearity severely restricts the range of numerical methods that are known to be convergent. These problems have traditionally been solved with low order monotone schemes, often of finite difference type, which feature certain limitations in terms of efficiency and practicability.
In this summary talk of my DPhil studies, we will be interested in the development of hp-version discontinuous Galerkin finite element methods (DGFEM) for the class of HJB equations that satisfy a Cordès condition. First, we will show the novel techniques of analysis used to find a stable and convergent scheme in the elliptic setting, and then we will present recent work on their extension to parabolic problems. The resulting method is very nonstandard, provably of high order, and it even allows for exponential convergence under hp-refinement. We present numerical experiments showing the accuracy, computational efficiency and flexibility of the scheme
Tue, 21 Jan 2014

12:00 - 13:30
L5

Almost Calabi-Yau algebras associated to SU(3) modular invariants

Mathew Pugh (Cardiff)
Abstract

The modular invariant partition functions for SU(2) and SU(3)

conformal field theories have been classified. The SU(2) theory is closely

related to the preprojective algebras of Coxeter-Dynkin quivers. The

analogous finite dimensional superpotential algebras, which we call almost

Calabi-Yau algebras, associated to the SU(3) invariants will be discussed.

Mon, 20 Jan 2014

17:00 - 18:00
L6

A logarithmic Sobolev inequality for the invariant measure of the periodic Korteweg--de Vries equation

Gordon Blower
(University of Lancaster)
Abstract

The periodic KdV equation $u_t=u_{xxx}+\beta uu_x$ arises from a Hamiltonian system with infinite-dimensional phase space $L^2({\bf T})$. Bourgain has shown that there exists a Gibbs probability measure $\nu$ on balls $\{\phi :\Vert \phi\Vert^2_{L^2}\leq N\}$ in the phase space such that the Cauchy problem for KdV is well posed on the support of $\nu$, and $\nu$ is invariant under the KdV flow. This talk will show that $\nu$ satisfies a logarithmic Sobolev inequality. The seminar presents logarithmic Sobolev inequalities for the modified periodic KdV equation and the cubic nonlinear Schr\"odinger equation. There will also be recent results from Blower, Brett and Doust regarding spectral concentration phenomena for Hill's equation.

Mon, 20 Jan 2014

16:00 - 17:00
C5

The private life of Bryan

Jan Vonk
(Oxford University)
Abstract

This talk will discuss the discovery of Heegner points from a historic perspective. They are a beautiful application of analytic techniques to the study of rational points on elliptic curves, which is now a ubiquitous theme in number theory. We will start with a historical account of elliptic curves in the 60's and 70's, and a correspondence between Birch and Gross, culminating in the Gross-Zagier formula in the 80's. Time permitting, we will discuss certain applications and ramifications of these ideas in modern number theory. 

Mon, 20 Jan 2014

15:45 - 16:45

Random matrices at high temperature"

ROMAIN ALLEZ
(WIAS Berlin)
Abstract

We shall discuss the statistics of the eigenvalues of large random Hermitian matrices when the temperature is very high. In particular we shall focus on the transition from Wigner/Airy to Poisson regime.

Mon, 20 Jan 2014
14:15
L5

New examples of non-Kahler Ricci solitons

Andrew Dancer
(Oxford)
Abstract

We produce new families of steady and expanding Ricci solitons
that are not of Kahler type. In the steady case, the asymptotics are
a mixture of the Hamilton cigar and the Bryant soliton paraboloid
asymptotics. We obtain some examples of Ricci solitons on homeomorphic
but non-diffeomorphic spaces. We also find numerical evidence of solitons
with more complicated topology.

Mon, 20 Jan 2014

12:00 - 13:00
L5

A Holographic Model of the Kondo Effect

Andy O'Bannon
(Oxford)
Abstract
The Kondo effect occurs in metals doped with magnetic impurities: in the ground state the electrons form a screening cloud around each impurity, leading to dramatic changes in the thermodynamic and transport properties of the metal. Although the single-impurity Kondo effect is considered a solved problem, many questions remain, especially about the fate of the Kondo effect in the presence of multiple impurities. In particular, for a sufficiently dense concentration of impurities, a competition between the Kondo effect and inter-impurity interactions can lead to quantum criticality and non-Fermi liquid behavior, which remains poorly understood. In this talk I will present a model of the single-impurity Kondo effect based on holography, also known as gauge-gravity duality or the AdS/CFT correspondence, which may serve as a foundation for a new approach to the multiple-impurity system.
Fri, 17 Jan 2014

14:00 - 15:30
L3

The positive Jacobian constraint in elasticity theory and orientation-preserving Young measures

Filip Rindler
(University of Warwick)
Abstract

In elasticity theory, one naturally requires that the Jacobian determinant of the deformation is positive or even a-priori prescribed (for example incompressibility). However, such strongly non-linear and non-convex constraints are difficult to deal with in mathematical models. In this talk, which is based on joint work with K. Koumatos (Oxford) and E. Wiedemann (UBC/PIMS), I will present various recent results on how this constraint can be manipulated in subcritical Sobolev spaces, where the integrability exponent is less than the dimension.

In particular, I will give a characterization theorem for Young measures under this side constraint, which are widely used in the Calculus of Variations to model limits of nonlinear functions of weakly converging "generating" sequences. This is in the spirit of the celebrated Kinderlehrer--Pedregal Theorem and based on convex integration and "geometry" in matrix space.

Finally, applications to the minimization of integral functionals, the theory of semiconvex hulls, incompressible extensions, and approximation of weakly orientation-preserving maps by strictly orientation-preserving ones in Sobolev spaces are given.

Thu, 16 Jan 2014

16:00 - 17:30
L3

Topology of Sobolev spaces and Local minimizers

Ali Taheri
(University of Sussex)
Abstract

Attempting to extend the methods of critical point theory (e.g., those of Morse theory and Lusternik-Schnirelman theory) to the study of strong local minimizers of integral functionals of the calculus of variations I will describe how the obstruction method of algebraic topology can be successfully used to tackle the enumeration problem for various homotopy classes of maps in Sobolev spaces and that how this will result in precise lower bounds on the number of such local minimizers in terms of convenient topological invariants of the underlying spaces. I will then move on to dicussing variants as well as applications of the result to some classes of geometric nonlinear PDEs in particular problems in nonlinear elasticity.

Thu, 16 Jan 2014

14:00 - 15:30
L3

Functionals defined on 1-rectifiable sets and the application to the theory of dislocations

Adriana Garroni
(Universita’ di Roma)
Abstract

In the theory of dislocations one is naturally led to consider energies of “line tension” type concentrated on lines. These lines may have a local vector-valued multiplicity, and the energy may depend on this multiplicity and on the orientation of the line. In the two-dimensional case this problem reduces to the classical problem of energies defined on partitions which arises in the sharp-interface models for phase transitions. 

I will introduce the main results concerning functionals in the calculus of variations that are defined on partitions. Such partitions are nicely characterized as level sets of function with bounded variations with a discrete set of values.  In this setting I will recall the characterization of the lower semicontinuity and the relaxation formula, which gives rise to the notion of BV-ellipticity. The case of dislocations in a three-dimensional crystal requires a formulation in the setting of 1-rectifiable currents with multiplicity in a lattice. In this context I will describe the main results and some examples of interest, in which relaxation is necessary and can be characterized.

Tue, 14 Jan 2014

18:00 - 18:50
L4

Decay for the Maxwell field outside a slowly rotating Kerr black hole

Pieter Blue
(University of Edinburgh)
Abstract

The Maxwell equation is an intermediate linear model for

Einstein's equation lying between the scalar wave equation and the

linearised Einstein equation. This talk will present the 5 key

estimates necessary to prove a uniform bound on an energy and a

Morawetz integrated local energy decay estimate for the nonradiating

part.

The major obstacles, relative to the scalar wave equation are: that a

scalar equation must be found for at least one of the components,

since there is no known decay estimate directly at the tensor level;

that the scalar equation has a complex potential; and that there are

stationary solutions and, in the nonzero $a$ Kerr case, it is more

difficult to project away from these stationary solutions.

If time permits, some discussion of a geometric proof using the hidden

symmetries will be given.

This is joint work with L. Andersson and is arXiv:1310.2664.

Tue, 14 Jan 2014

17:10 - 18:00
L4

Conservation laws for the wave equation on null hypersurfaces and applications

Stefanos Aretakis
(Princeton University)
Abstract

We will present recent results regarding conservation laws for the wave equation on null hypersurfaces.  We will show that an important example of a null hypersurface admitting such conserved quantities is the event horizon of extremal black holes. We will also show that a global analysis of the wave equation on such backgrounds implies that certain derivatives of solutions to the wave equation asymptotically blow up along the event horizon of such backgrounds. In the second part of the talk we will present a complete characterization of null hypersurfaces admitting conservation laws. For this, we will introduce and study the gluing problem for characteristic initial data and show that the only obstruction to gluing is in fact the existence of such conservation laws.

Tue, 14 Jan 2014

14:00 - 14:50

Future Dynamics of T2 symmetric polarized spacetimes

Jacques Smulevici
(Universite Paris Sud)
Abstract

Joint Work with Philippe G. LeFloch. We consider vacuum
spacetimes with two spatial Killing vectors and with initial data
prescribed on $T^3$. The main results that we will present concern the
future asymptotic behaviour of the so-called polarized solutions. Under
a smallness assumption, we derive a full set of asymptotics for these
solutions. Within this symetry class, the Einstein equations reduce to a
system of wave equations coupled to a system of ordinary differential
equations. The main difficulty, not present in previous study of similar
systems, is that, even in the limit of large times, the two systems do
not directly decouple. We overcome this problem by the introduction of a
new system of ordinary differential equations, whose unknown are
renormalized variables with renormalization depending on the solution of
the non-linear wave equations.

Tue, 14 Jan 2014

12:10 - 12:35
L4

A Large Data Regime for non-linear Wave Equations Lunch

Jin-hua Wang
(Max Planck Institute for Gravitational Physics)
Abstract
This is a joint work with Pin Yu. For semi-linear wave equations with null form non-linearities on $\mathbb{R}^{3+1}$, we exhibit an open set of initial data which are allowed to be large in energy spaces, yet we can still obtain global solutions in the future. We also exhibit a set of localized data for which the corresponding solutions are strongly focused, which in geometric terms means that a wave travels along an specific incoming null geodesic in such a way that almost all of the energy is confined in a tubular neighborhood of the geodesic and almost no energy radiating out of this tubular neighborhood.
Tue, 14 Jan 2014

09:00 - 09:50
L4

Dynamics of self-gravitating bodies

Lars Andersson
(Max Planck Institute for Gravitational Physics)
Abstract

In this talk I will discuss the Cauchy problem for bounded

self-gravitating elastic bodies in Einstein gravity. One of the main

difficulties is caused by the fact that the spacetime curvature must be

discontinuous at the boundary of the body. In order to treat the Cauchy

problem, one must show that the jump in the curvature propagates along

the timelike boundary of the spacetime track of the body. I will discuss

a proof of local well-posedness which takes this behavior into account.