Fri, 15 Nov 2013

10:00 - 11:00
L5

Finding the Direction of Supersonic Travel from Shock Wave Measurements

Philip Pidsley, Thales Underwater Systems
Abstract

A projectile travelling supersonically in air creates a shock wave in the shape of a cone, with the projectile at the tip of the Mach cone. When the projectile travels over an array of microphones the shock wave is detected with different times of arrival at each microphone. Given measurements of the times of arrival, we are trying to calculate the azimuth direction of travel of the projectile. We have found a solution when the speed of the projectile is known. However the solution is ambiguous, and can take one of two possible values. Therefore we are seeking a new mathematical approach to resolve the ambiguity and thus find the azimuth direction of travel.

Thu, 14 Nov 2013

17:15 - 18:15
L6

First-order irrationality criteria

Lee Butler
(Bristol)
Abstract

A major desideratum in transcendental number theory is a simple sufficient condition for a given real number to be irrational, or better yet transcendental. In this talk we consider various forms such a criterion might take, and prove the existence or non-existence of them in various settings.

Thu, 14 Nov 2013

16:00 - 17:30
C5

The Andersen--Kashaev TQFT

Jens-Jakob Kratmann Nissen
(Aarhus University)
Abstract

By using the Weil-Gel'fand-Zak transform of Faddeev's quantum dilogarithm,

Andersen and Kasheav have proposed a new state-integral model for the

Andersen--Kashaev TQFT, where the circle valued state variables live on

the edges of oriented levelled shaped triangulations. I will look at a

couple of examples which give an idea of how the theories are coupled.

Thu, 14 Nov 2013

16:00 - 17:00
L3

Hydrodynamic Turbulence as a Problem in Non-Equilibrium Statistical Mechanics

David Ruelle
(Emeritus Professor IHÉS)
Abstract

The problem of hydrodynamic turbulence is reformulated as a heat flow problem along a chain of mechanical systems which describe units of fluid of smaller and smaller spatial extent. These units are macroscopic but have few degrees of freedom, and can be studied by the methods of (microscopic) non-equilibrium statistical mechanics. The fluctuations predicted by statistical mechanics correspond to the intermittency observed in turbulent flows. Specically, we obtain the formula

$$ \zeta_p = \frac{p}{3} - \frac{1}{\ln \kappa} \ln \Gamma \left( \frac{p}{3} +1 \right) $$

for the exponents of the structure functions ($\left\langle \Delta_{r}v \rangle \sim r^{\zeta_p}$). The meaning of the adjustable parameter is that when an eddy of size $r$ has decayed to eddies of size $r/\kappa$ their energies have a thermal distribution. The above formula, with $(ln \kappa)^{-1} = .32 \pm .01$ is in good agreement with experimental data. This lends support to our physical picture of turbulence, a picture which can thus also be used in related problems.

Thu, 14 Nov 2013

14:00 - 15:00
L5

Range space Krylov methods for data assimilation in meteorology and oceanography

Professor Philippe Toint
(University of Namur)
Abstract

The context of data assimilation in oceanography will be described as well as the computational challenges associated with it. A class of numerical linear algebra methods is described whose purpose is to exploit the problem structure in order to reduce the computational burden and provide provable convergence results for what remains a (very large) nonlinear problem. This class belongs to the Krylov-space family of methods and the special structure used is the imbalance between the dimensions of the state space and the observation space. It is also shown how inexact matrix-vector products can be exploited. Finally, preconditioning issues and resulting adaptations of the trust-region methodology for nonlinear minimization will also be outlined.

By Serge Gratton, Selime Gurol, Philippe Toint, Jean Tshimanga and Anthony Weaver.

Thu, 14 Nov 2013

13:00 - 14:00
L6

see below

Victor Fedyashov and Ruolong Chen
Abstract

\textbf{Victor Fedyashov} \newline

\textbf{Title:} Ergodic BSDEs with jumps \newline

\textbf{Abstract:} We study ergodic backward stochastic differential equations (EBSDEs) with jumps, where the forward dynamics are given by a non-autonomous (time-periodic coefficients) Ornstein-Uhlenbeck process with Lévy noise on a separable Hilbert space. We use coupling arguments to establish existence of a solution. We also prove uniqueness of the Markovian solution under certain growth conditions using recurrence of the above mentioned forward SDE. We then give applications of this theory to problems of risk-averse ergodic optimal control.

\newline

\textbf{Ruolong Chen} \newline

\textbf{Title:} tba \newline

\textbf{Abstract:}

Wed, 13 Nov 2013

16:00 - 17:00
C6

Hyperbolic volume (again): the case of the mapping tori

Antonio De Capua
(Oxford)
Abstract

Last week in the Kinderseminar I talked about a rough estimate on volumes of certain hyperbolic 3-manifolds. This time I will describe a different approach for similar estimates (you will not need to remember that talk, don't worry!), which is, in some sense, complementary to that one, as it regards mapping tori. A theorem of Jeffrey Brock provides bounds for their volume in terms of how the monodromy map acts on the pants graph (a relative of the better known curve complex) of the base surface. I will describe the setting and the relevance of this result (in particular the one it has for me); hopefully, I will also tell you part of its proof.

Wed, 13 Nov 2013
16:00
C4

Baire, Berz, Burton Jones and Steinhaus: linearity from subadditivity

Adam Ostaszewski
(LSE)
Abstract

Berz used the Hahn-Banach Theorem over Q to prove that the graph of a measurable subadditive function that is non-negatively Q-homogeneous consists of two lines through the origin. I will give a proof using the density topology and Steinhaus’ Sum-set Theorem. This dualizes to a much simpler category version: a `Baire-Berz Theorem’. I will give the broader picture of this using F. Burton Jones’ analysis of additivity versus linearity. Shift-compactness and special subsets of R will be an inevitable ingredient. The talk draws on recent work with Nick Bingham and separately with Harry I. Miller.

Wed, 13 Nov 2013
10:30
Queen's College

Ax-Grothendieck Theorem

Levon Haykazyan
Abstract

(A simplified version of) Ax-Grothendieck Theorem states that every injective polynomial map from some power of complex numbers into itself is surjective. I will present a simple model-theoretical proof of this fact. All the necessary notions from model theory will be introduced during the talk. The only prerequisite is basic field theory.

Tue, 12 Nov 2013

17:00 - 18:00
C5

Polynomial representation growth and alternating quotients.

Ben Martin
(Auckland)
Abstract

Let $\Gamma$ be a group and let $r_n(\Gamma)$ denote the

number of isomorphism classes of irreducible $n$-dimensional complex

characters of $\Gamma$. Representation growth is the study of the

behaviour of the numbers $r_n(\Gamma)$. I will give a brief overview of

representation growth.

We say $\Gamma$ has polynomial representation growth if $r_n(\Gamma)$ is

bounded by a polynomial in $n$. I will discuss a question posed by

Brent Everitt: can a group with polynomial representation growth have

the alternating group $A_n$ as a quotient for infinitely many $n$?

Tue, 12 Nov 2013

14:30 - 15:30
L2

The Ramsey number of the clique and the hypercube

Simon Griffiths
(University of Oxford)
Abstract

The Ramsey number $R(K_s, Q_n)$ is the smallest integer $N$ such that every red-blue colouring of the edges of the complete graph $K_N$ contains either a red $n$-dimensional hypercube, or a blue clique on $s$ vertices. Note that $N=(s-1)(2^n -1)$ is not large enough, since we may colour in red $(s-1)$ disjoint cliques of cardinality $2^N -1$ and colour the remaining edges blue. In 1983, Burr and Erdos conjectured that this example was the best possible, i.e., that $R(K_s, Q_n) = (s-1)(2^n -1) + 1$ for every positive integer $s$ and sufficiently large $n$. In a recent breakthrough, Conlon, Fox, Lee and Sudakov proved the conjecture up to a multiplicative constant for each $s$. In this talk we shall sketch the proof of the conjecture and discuss some related problems.

(Based on joint work with Gonzalo Fiz Pontiveros, Robert Morris, David Saxton and Jozef Skokan)

Tue, 12 Nov 2013

14:00 - 15:00
L5

Continuous analogues of matrix factorizations

Alex Townsend
(University of Oxford)
Abstract

In this talk we explore continuous analogues of matrix factorizations.  The analogues we develop involve bivariate functions, quasimatrices (a matrix whose columns are 1D functions), and a definition of triangular in the continuous setting.  Also, we describe why direct matrix algorithms must become iterative algorithms with pivoting for functions. New applications arise for function factorizations because of the underlying assumption of continuity. One application is central to Chebfun2. 

Tue, 12 Nov 2013

12:00 - 13:00
L6

Variational and Quasi-variational Solutions to Nonlinear Equations with Gradient Constraint

Prof. Jose Francisco Rodrigues
(Portugal)
Abstract

We prove existence of solution for evolutionary variational and quasivariational inequalities defined by a first order quasilinear operator and a variable convex set, characterized by a constraint on the absolute value of the gradient (which, in the quasi-variational case, depends on the solution itself). The only required assumption on the nonlinearity of this constraint is its continuity and positivity. The method relies on an appropriate parabolic regularization and suitable a priori estimates.

Uniqueness of solution is proved for the variational inequality. We also obtain existence of stationary solutions, by studying the asymptotic behaviour in time. We shall illustrate a simple “sand pile” example in the variational case for the transport operator were the problem is equivalent to a two-obstacles problem and the solution stabilizes in finite time. Further remarks about these properties of the solution will be presented.This is a joint work with Lisa Santos.

If times allows, using similar techniques, I shall also present the existence, uniqueness and continuous dependence of solutions of a new class of evolution variational inequalities for incompressible thick fluids. These non-Newtonian fluids with a maximum admissible shear rate may be considered as a limit class of shear-thickening or dilatant fluids, in particular, as the power limit of Ostwald-deWaele fluids.

Tue, 12 Nov 2013
03:00
C2

The Kinematic Algebras from the Scattering Equations

Ricardo Monteiro
(Oxford)
Abstract

We discuss kinematic algebras associated to the scattering equations that arise in the description of the scattering of massless particles.  We describe their role in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex and identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant.

Tue, 12 Nov 2013
03:00
C2

The Kinematic Algebras from the Scattering Equations

Ricardo Monteiro
(Oxford)
Abstract

We discuss kinematic algebras associated to the scattering equations that arise in the description of the scattering of massless particles.  We describe their role in the BCJ duality between colour and kinematics in gauge theory, and its relation to gravity. We find that the scattering equations are a consistency condition for a self-dual-type vertex and identify an extension of the anti-self-dual vertex, such that the two vertices are not conjugate in general. Both vertices correspond to the structure constants of Lie algebras. We give a prescription for the use of the generators of these Lie algebras in trivalent graphs that leads to a natural set of BCJ numerators. In particular, we write BCJ numerators for each contribution to the amplitude associated to a solution of the scattering equations. This leads to a decomposition of the determinant of a certain kinematic matrix, which appears naturally in the amplitudes, in terms of trivalent graphs. We also present the kinematic analogues of colour traces, according to these algebras, and the associated decomposition of that determinant.

Mon, 11 Nov 2013

17:00 - 18:00
C5

Cubic polynomials represented by norm forms

Alastair Irving
Abstract

I will describe how a sieve method can be used to establish the Hasse principle for the variety

$$f(t)=N(x_1,\ldots,x_k),$$

where $f$ is an irreducible cubic and $N$ is a norm form for a number field satisfying certain hypotheses.

Mon, 11 Nov 2013

17:00 - 18:00
L6

Dynamical deformations of the catenoid

Wong Willie Wai Yeung
(EPFL (Ecole Polytechnique Federale de Lausanne))
Abstract

The vanishing mean curvature flow in Minkowski space is the

natural evolutionary generalisation of the minimal surface equation,

and has applications in cosmology as a model equation for cosmic

strings and membranes. The equation clearly admits initial data which

leads to singularity formation in finite time; Nguyen and Tian have

even shown stability of the singularity formation in low dimension. On

the other hand, Brendle and Lindblad separately have shown that all

"nearly flat" initial data leads to global existence of solutions. In

this talk, I describe an intermediate regime where global existence

of solutions can be proven on a codimension 1 set of initial data; and

where the codimension 1 condition is optimal --- The

catenoid, being a minimal surface in R^3, is a static solution to the

vanishing mean curvature flow. Its variational instability as a

minimal surface leads to a linear instability under the flow. By

appropriately "modding out" this unstable mode we can show the

existence of a stable manifold of initial data that gives rise to

solutions which scatters toward to the

catenoid. This is joint work with Roland Donninger, Joachim Krieger,

and Jeremy Szeftel. The preprint is available at http://arxiv.org/abs/1310.5606v1