Fri, 28 Jan 2022

16:00 - 17:00
L1

North Meets South

Kaibo Hu and Davide Spriano
Abstract

This event will be hybrid and will take place in L1 and on Teams. A link will be available 30 minutes before the session begins.

Kaibo Hu
Title: Complexes from complexes
Abstract:
Continuous and discrete (finite element) de Rham complexes have inspired key progress in the mathematical and numerical analysis of the Maxwell equations. In this talk, we derive new differential complexes from the de Rham complexes. These complexes have applications in, e.g., general relativity and continuum mechanics. Examples include the elasticity (Kröner or Calabi) complex, which encodes fundamental structures in Riemannian geometry and elasticity. This homological algebraic construction is inspired by the Bernstein-​Gelfand-Gelfand (BGG) machinery from representation theory. Analytic results, e.g., various generalisations of the Korn inequality, follow from the algebraic structures. We briefly discuss applications in numerical PDEs and other fields.

Davide Spriano

Title: Growth of groups.

Abstract:
Given a transitive graph, it is natural to consider how many vertices are contained in a ball of radius n, and to study how this quantity changes as n increases. We call such a function the growth of the graph.

In this talk, we will see some examples of growth of Cayley graph of groups, and survey some classical results. Then we will see a dichotomy in the growth behaviour of groups acting on CAT(0) cube complexes.  

Fri, 28 Jan 2022

16:00 - 17:00
Virtual

Applications of subfactor and categorical techniques to C*-algebras

Roberto Hernandez Palomares
(Texas A&M University)
Abstract

Q-systems were introduced by Longo to describe the canonical endomorphism of a finite Jones-index inclusion of infinite von Neumann factors. From our viewpoint, a Q-system is a unitary  version of a Frobenius algebra object in a tensor category or a C* 2-category. Following work of Douglass-Reutter, a Q-system is also a unitary version of a higher idempotent, and we will describe a higher unitary idempotent completion for C* 2-categories called Q-system completion. 


We will focus on the C* 2-category C*Alg with objects unital C*-algebras, 1-morphisms right Hilbert C*-correspondences, and 2-morphisms adjointable intertwiners. By adapting a subfactor reconstruction technique called realization, and using the graphical calculus available for C* 2-categories, we will show that C*Alg is Q-system complete.

This result allows for the straightforward adaptation of subfactor results to C*-algebras, characterizing finite Watatani-index extensions of unital C*-algebras equipped with a faithful conditional expectation in terms of the Q-systems in C*Alg. Q-system completion can also be used to induce new symmetries of C*-algebras from old. 

 

This is joint work with Quan Chen, Corey Jones and Dave Penneys (arXiv: 2105.12010).

Fri, 28 Jan 2022
16:00
N4.01

Generalized Symmetries of the Graviton

Javier Magan
(UPenn)
Further Information

It is also possible to join virtually via Teams.

Abstract

In this talk we discuss the set of generalized symmetries associated with the free graviton theory in four dimensions. These are generated by ring-like operators. As for the Maxwell field, we find a set of “electric” and a dual set of “magnetic” topological operators and compute their algebra. The associated electric and magnetic fields satisfy a set of constraints equivalent to the ones of a stress tensor of a 3d CFT. This implies that the generalized symmetry is charged under space-time symmetries, and it provides a bridge between linearized gravity and the tensor gauge theories that have been introduced recently in the context of fractonic systems in condensed matter physics.

Fri, 28 Jan 2022

15:00 - 16:00
L6

Topological Tools for Signal Processing

Sarah Tymochko
(Michigan State University)
Abstract

Topological data analysis (TDA) is a field with tools to quantify the shape of data in a manner that is concise and robust using concepts from algebraic topology. Persistent homology, one of the most popular tools in TDA, has proven useful in applications to time series data, detecting shape that changes over time and quantifying features like periodicity. In this talk, I will present two applications using tools from TDA to study time series data: the first using zigzag persistence, a generalization of persistent homology, to study bifurcations in dynamical systems and the second, using the shape of weighted, directed networks to distinguish periodic and chaotic behavior in time series data.

Fri, 28 Jan 2022

14:00 - 15:00
Virtual

Multiscaling the CRISPR-cas revolution from gene editing to viral detection

Prof Giulia Palermo
(Department of Bioengineering University of California Riverside)
Abstract

CRISPR is synonymous with a transformative genome editing technology that is innovating basic and applied sciences. I will report about the use of computational approaches to clarify the molecular basis and the gene-editing function of CRISPR-Cas9 and newly discovered CRISPR systems that are emerging as powerful tools for viral detection, including the SARS-CoV-2 coronavirus. We have implemented a multiscale approach, which combines classical molecular dynamics (MD) and enhanced sampling techniques, ab-initio MD, mixed Quantum Mechanics/Molecular Mechanics (QM/MM) approaches and constant pH MD (CpH MD), as well as cryo-EM fitting tools and graph theory derived analysis methods, to reveal the mechanistic basis of nucleic acid binding, catalysis, selectivity, and allostery in CRISPR systems. Using a Gaussian accelerated MD method and the Anton-2 supercluster we determined the conformational activation of CRISPR-Cas9 and the selectivity mechanism against off-target sequences. By applying network models graph theory, we have characterized a mechanism of allosteric regulation, transferring the information of DNA binding to the catalytic sites for cleavages. This mechanism is now being probed in novel Anti-CRISPR proteins, forming multi-mega Dalton complexes with the CRISPR enzymes and used for gene regulation and control. CpH MD simulations have been combined with ab-initio MD and a mixed QM/MM approach to establish the catalytic mechanism of DNA cleavage. Finally, by using multi-microsecond MD simulations we have recently probed a mechanism of DNA-induced of activation in the Cas12a enzyme, which underlies the detection of viral genetic elements, including the SARS-CoV-2 coronavirus. Overall, our outcomes contribute to the mechanistic understanding of CRISPR-based gene-editing technologies, providing information that is critical for the development of improved gene-editing tools for biomedical applications.

Fri, 28 Jan 2022

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Christoph Hoeppke, Georgia Brennan
(Mathematical Institute (University of Oxford))
Thu, 27 Jan 2022

16:00 - 17:00
Virtual

Learning Homogenized PDEs in Continuum Mechanics

Andrew Stuart
(Caltech)
Further Information
Abstract

Neural networks have shown great success at learning function approximators between spaces X and Y, in the setting where X is a finite dimensional Euclidean space and where Y is either a finite dimensional Euclidean space (regression) or a set of finite cardinality (classification); the neural networks learn the approximator from N data pairs {x_n, y_n}. In many problems arising in the physical and engineering sciences it is desirable to generalize this setting to learn operators between spaces of functions X and Y. The talk will overview recent work in this context.

Then the talk will focus on work aimed at addressing the problem of learning operators which define the constitutive model characterizing the macroscopic behaviour of multiscale materials arising in material modeling. Mathematically this corresponds to using machine learning to determine appropriate homogenized equations, using data generated at the microscopic scale. Applications to visco-elasticity and crystal-plasticity are given.

Thu, 27 Jan 2022

15:00 - 16:00
Virtual

Ricci curvature lower bounds for metric measure spaces.

Dimitri Navarro
(Oxford University)
Abstract

In the '80s, Gromov proved that sequences of Riemannian manifold with a lower bound on the Ricci curvature and an upper bound on the dimension are precompact in the measured Gromov--Hausdorff topology (mGH for short). Since then, much attention has been given to the limits of such sequences, called Ricci limit spaces. A way to study these limits is to introduce a synthetic definition of Ricci curvature lower bounds and dimension upper bounds. A synthetic definition should not rely on an underlying smooth structure and should be stable when passing to the limit in the mGH topology. In this talk, I will briefly introduce CD spaces, which are a generalization of Ricci limit spaces.

Thu, 27 Jan 2022
14:00
Virtual

Approximation and discretization beyond a basis: theory and applications

Daan Huybrechs
(KU Leuven)
Abstract

Function approximation, as a goal in itself or as an ingredient in scientific computing, typically relies on having a basis. However, in many cases of interest an obvious basis is not known or is not easily found. Even if it is, alternative representations may exist with much fewer degrees of freedom, perhaps by mimicking certain features of the solution into the “basis functions" such as known singularities or phases of oscillation. Unfortunately, such expert knowledge typically doesn’t match well with the mathematical properties of a basis: it leads instead to representations which are either incomplete or overcomplete. In turn, this makes a problem potentially unsolvable or ill-conditioned. We intend to show that overcomplete representations, in spite of inherent ill-conditioning, often work wonderfully well in numerical practice. We explore a theoretical foundation for this phenomenon, use it to devise ground rules for practitioners, and illustrate how the theory and its ramifications manifest themselves in a number of applications.

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

 

Thu, 27 Jan 2022

12:00 - 13:00
L1

OCIAM TBC

Luca Tubiana
(University of Trento)
Further Information

Luca Tubiana is Assistant Professor of applied Physics at Università di Trento.

Thu, 27 Jan 2022

12:00 - 13:00
L6

Regularity results for Legendre-Hadamard elliptic systems

Christopher Irving
(Oxford University)
Abstract

I will discuss the regularity of solutions to quasilinear systems satisfying a Legendre-Hadamard ellipticity condition. For such systems it is known that weak solutions may which fail to be C^1 in any neighbourhood, so we cannot expect a general regularity theory. However if we assume an a-priori regularity condition of the solutions we can rule out such counterexamples. Focusing on solutions to Euler-Lagrange systems, I will present an improved regularity results for solutions whose gradient satisfies a suitable BMO / VMO condition. Ideas behind the proof will be presented in the interior case, and global consequences will also be discussed.

Wed, 26 Jan 2022

16:00 - 17:00
C2

Moduli space approach to the conjectures of Ivanov and Putman-Wieland

Ognjen Tosic
(University of Oxford)
Abstract

A well-known conjecture of Ivanov states that mapping class groups of surfaces with genus at least 3 virtually do not surject onto the integers. Putman and Wieland reformulated this conjecture in terms of higher Prym representations of finite-index subgroups of mapping class groups. We show that the Putman-Wieland conjecture holds for geometrically uniform subgroups. Along the way we construct a cover S of the genus 2 surface such that the lifts of simple closed curves do not generate the rational homology of S. This is joint work with Markovic.

Wed, 26 Jan 2022

15:00 - 16:00
Virtual

Introduction to Social Choice Theory

Arturo Rodriguez Fanlo
(Logic Group)
Abstract

This talk aims to be a rigorous introduction to Social Choice Theory, a sub-branch of Game Theory with natural applications to economics, sociology and politics that tries to understand how to determine, based on the personal opinions of all individuals, the collective opinion of society. The goal is to prove the three famous and pessimistic impossibility theorems: Arrow's theorem, Gibbard's theorem and Balinski-Young's theorem. Our blunt conclusion will be that, unfortunately, there are no ideally fair social choice systems. Is there any hope yet?

Tue, 25 Jan 2022

15:30 - 16:30
Virtual

Gaussian Multiplicative Chaos for Gaussian Orthogonal and Symplectic Ensembles

Pax Kivimae
(Northwestern University)
Abstract

In recent years, our understanding of the asymptotic behavior of characteristic polynomials of random matrices has seen much progression. A key paradigm in this area is that the asymptotic behavior is often captured by an appropriate family of Gaussian multiplicative chaos (GMC) measures (defined heuristically as the normalized exponential of log-correlated random fields). Indeed, such results have been shown for Harr distributed matrices for U(N), O(N), and Sp(2N), as well as for one-cut Hermitian invariant ensembles (and in particular, GUE(N)). In this talk we explain an extension of these results to GOE(2N) and GSE(N). The key tool is a new asymptotic relation between the moments of the characteristic polynomials of all three classical ensembles. 

Tue, 25 Jan 2022

14:00 - 15:00
Virtual

The emergence of concepts in shallow neural-networks

Elena Agliari
(University of Rome Sapienza)
Abstract

In the first part of the seminar I will introduce shallow neural-networks from a statistical-mechanics perspective, focusing on simple cases and on a naive scenario where information to be learnt is structureless. Then, inspired by biological information processing, I will enrich this framework by accounting for structured datasets and by making the network able to perform challenging tasks like generalization or even "taking a nap”. Results presented are both analytical and numerical.

Tue, 25 Jan 2022
14:00
Virtual

Induced Poset Saturation

Maria-Romina Ivan
(Cambridge)
Abstract

Given a fixed poset $\mathcal P$, we say that a family $\mathcal F$ of subsets of $[n]$ is $\mathcal P$-free if it does not contain an (induced) copy of $\mathcal P$. And we say that $F$ is $\mathcal P$-saturated if it is maximal $\mathcal P$-free. How small can a $\mathcal P$-saturated family be? The smallest such size is the induced saturation number of $\mathcal P$, $\text{sat}^*(n, \mathcal P)$. Even for very small posets, the question of the growth speed of $\text{sat}^*(n,\mathcal P)$ seems to be hard. We present background on this problem and some recent results.

Mon, 24 Jan 2022

16:00 - 17:00
C2

TBA

Yifan Jing
Mon, 24 Jan 2022
15:30
Virtual

Deformations of ordinary Calabi-Yau varieties

Lukas Brantner
(Oxford)
Abstract

Over the complex numbers, the Bomolgorov-Tian-Todorev theorem asserts that Calabi-Yau varieties have unobstructed deformations, so any n^{th} order deformation extends to higher order.  We prove an analogue of this statement for the nicest kind of Calabi-Yau varieties in characteristic p, namely ordinary ones, using derived algebraic geometry. In fact, we produce canonical lifts to characteristic zero, thereby generalising results of Serre-Tate, Deligne-Nygaard, Ward, and Achinger-Zdanowic. This is joint work with Taelman.

Mon, 24 Jan 2022
14:15
Virtual

Cayley fibrations in the Bryant-Salamon manifolds

Federico Trinca
(University of Oxford)
Abstract

In 1989, Bryant and Salamon constructed the first Riemannian manifolds with holonomy group $\Spin(7)$. Since a crucial aspect in the study of manifolds with exceptional holonomy regards fibrations through calibrated submanifolds, it is natural to consider such objects on the Bryant-Salamon manifolds.

In this talk, I will describe the construction and the geometry of (possibly singular) Cayley fibrations on each Bryant-Salamon manifold. These will arise from a natural family of structure-preserving $\SU(2)$ actions. The fibres will provide new examples of Cayley submanifolds.

Mon, 24 Jan 2022

14:00 - 15:00
Virtual

Exploiting low dimensional data structures in volumetric X-ray imaging

Thomas Blumensath
(University of Southampton)
Abstract

Volumetric X-ray tomography is used in many areas, including applications in medical imaging, many fields of scientific investigation as well as several industrial settings. Yet complex X-ray physics and the significant size of individual x-ray tomography data-sets poses a range of data-science challenges from the development of efficient computational methods, the modelling of complex non-linear relationships, the effective analysis of large volumetric images as well as the inversion of several ill conditioned inverse problems, all of which prevent the application of these techniques in many advanced imaging settings of interest. This talk will highlight several applications were specific data-science issues arise and showcase a range of approaches developed recently at the University of Southampton to overcome many of these obstacles.

Mon, 24 Jan 2022
12:45
Virtual

Factorization in Quantum Gravity and Supersymmetry

Murat Kologlu
(Oxford)
Abstract

One of the lasting puzzles in quantum gravity is whether the holographic description of a gravitational system is a single quantum mechanical theory or the disorder average of many. In the latter case, multiple copies of boundary observables do not factorize into a product, but rather have higher moments. These correlations are interpreted in the bulk as due to geometries involving spacetime wormholes which connect disjoint boundaries. 

 

I will talk about the question of factorization and the role of wormholes for supersymmetric observables, specifically the supersymmetric index. Working with the Euclidean gravitational path integral, I will start with a bulk prescription for computing the supersymmetric index, which agrees with the usual boundary definition. Concretely, I will focus on the setting of charged black holes in asymptotically flat four-dimensional N=2 ungauged supergravity. In this case, the gravitational index path integral has an infinite family of Kerr-Newman classical saddles with different angular velocities. However, fermionic zero-mode fluctuations annihilate the contribution of each saddle except for a single BPS one which yields the expected value of the index. I will then turn to non-perturbative corrections involving spacetime wormholes, and show that fermionic zero modes are present for all such geometries, making their contributions vanish. This mechanism works for both single- and multi-boundary path integrals. In particular, only disconnected geometries without wormholes contribute to the index path integral, and the factorization puzzle that plagues the black hole partition function is resolved for the supersymmetric index. I will also present all other single-centered geometries that yield non-perturbative contributions to the gravitational index of each boundary. Finally, I will discuss implications and expectations for factorization and the status of supersymmetric ensembles in AdS/CFT in further generality. Talk based on [2107.09062] with Luca Iliesiu and Joaquin Turiaci.

Fri, 21 Jan 2022

16:00 - 17:00
L1

Thriving in, or perhaps simply surviving, academia: insights gained after nearly 40 years in STEM

Margot Gerritsen
(Stanford)
Abstract

This event will take place in L1 and on Teams. A link will be available 30 minutes before the session begins. 

 

It's hard to believe: I've spent nearly 40 years in STEM. In that time, much changed: we changed from typewriters to PCs, from low performance to high  performance computing, from data-supported research to data-driven research, from traditional languages such as Fortran to a plethora of programming environments. And the rate of change seems to increase constantly. Some things have stayed more or less the same, such as the (lack of) diversity of the STEM community, the level of stress and the struggles we all experience (and the joys!). In this talk, I will reflect on those years, on lessons learned and not learned or unlearned, on things I wish I understood 40 years ago, and on things I still don't understand.

Margot is a professor at Stanford University in the Department of Energy Resources Engineering (ERE) and the Institute of Computational & Mathematical Engineering (ICME). Margot was born and raised in the Netherlands. Her STEM education started in 1982. In 1990 she received a MSc in applied mathematics at Delft University and then left her home country to search for sunnier and hillier places. She moved to Colorado and a year later to California to join the PhD program in Scientific Computing and Computational Mathematics at Stanford. During her PhD, Margot spent several quarters at Oxford University (with very good memories). Before returning to Stanford as faculty member in ERE, Margot spent 5 years as lecturer at the University of Auckland, New Zealand. From 2010-2018, Margot was the director of ICME. During this directorship, she founded the Women in Data Science initiative, which is now a global organization in over 70 countries. From 2015-2020, Margot was also the Senior Associate Dean of Educational Affairs at Stanford's school of Earth, Energy & Environmental Sciences. Currently, Margot still co-directs WiDS and is the Chair of the Board of SIAM. She has since moved back to the mountains (still sunny too) and now lives in Bend, Oregon.

Fri, 21 Jan 2022
16:00
Virtual

On fixed points and phase transitions in five dimensions

Francesco Mignosa
(SISSA)
Abstract

Supersymmetric gauge theories in five dimensions, although power counting non-renormalizable, are known to be in some cases UV completed by a superconformal field theory. Many tools, such as M-theory compactification and pq-web constructions, were used in recent years in order to deepen our understanding of these theories. This framework gives us a concrete way in which we can try to search for additional IR conformal field theory via deformations of these well-known superconformal fixed points. Recently, the authors of 2001.00023 proposed a supersymmetry breaking mass deformation of the E_1theory which, at weak gauge coupling, leads to pure SU(2) Yang-Mills and which was conjectured to lead to an interacting CFT at strong coupling. During this talk, I will provide an explicit geometric construction of the deformation using brane-web techniques and show that for large enough gauge coupling a global symmetry is spontaneously broken and the theory enters a new phase which, at infinite coupling, displays an instability. The Yang-Mills and the symmetry broken phases are separated by a phase transition. Quantum corrections to this analysis are discussed, as well as possible outlooks. Based on arXiv: 2109.02662.

Fri, 21 Jan 2022

15:00 - 16:00
L6

A Multivariate CLT for Dissociated Sums with Applications to Random Complexes

Tadas Temčinas
(Mathematical Institute)
Abstract

Acyclic partial matchings on simplicial complexes play an important role in topological data analysis by facilitating efficient computation of (persistent) homology groups. Here we describe probabilistic properties of critical simplex counts for such matchings on clique complexes of Bernoulli random graphs. In order to accomplish this goal, we generalise the notion of a dissociated sum to a multivariate setting and prove an abstract multivariate central limit theorem using Stein's method. As a consequence of this general result, we are able to extract central limit theorems not only for critical simplex counts, but also for generalised U-statistics (and hence for clique counts in Bernoulli random graphs) as well as simplex counts in the link of a fixed simplex in a random clique complex.