Tue, 12 Feb 2019

12:00 - 13:00
C4

Modelling sparsity, heterogeneity, reciprocity and community structure in temporal interaction data

Xenia Miscouridou
(University of Oxford; Department of Statistics)
Abstract

We propose a novel class of network models for temporal dyadic interaction data. Our objective is to capture important features often observed in social interactions: sparsity, degree heterogeneity, community structure and reciprocity. We use mutually-exciting Hawkes processes to model the interactions between each (directed) pair of individuals. The intensity of each process allows interactions to arise as responses to opposite interactions (reciprocity), or due to shared interests between individuals (community structure). For sparsity and degree heterogeneity, we build the non time dependent part of the intensity function on compound random measures following (Todeschini et al., 2016). We conduct experiments on real- world temporal interaction data and show that the proposed model outperforms competing approaches for link prediction, and leads to interpretable parameters.

 

Link to paper: https://papers.nips.cc/paper/7502-modelling-sparsity-heterogeneity-reci…

Mon, 11 Feb 2019
16:00

Laplace eigenvalue bounds: the Korevaar method revisited

Gerasim Kokarev
(University of Leeds)
Abstract

 I will give a short survey on classical inequalities for Laplace eigenvalues, tell about related history and questions. I will then discuss the so-called Korevaar method, and new results generalising to higher eigenvalues a number of classical inequalities known for the first Laplace eigenvalue only. 

Mon, 11 Feb 2019
15:45
L6

Local flexibility for open partial differential relations

Bernhard Hanke
(University of Augsburg)
Abstract

In his famous book on partial differential relations Gromov formulates an exercise concerning local deformations of solutions to open partial differential relations. We will explain the content of this fundamental assertion and sketch a proof. 

In the sequel we will apply this to extend local deformations of closed $G_2$ structures, and to construct 
$C^{1,1}$-Riemannian metrics which are positively curved "almost everywhere" on arbitrary manifolds. 

This is joint work with Christian Bär (Potsdam).

Mon, 11 Feb 2019

15:45 - 16:45
L3

Small time asymptotics for Brownian motion with singular drift

TUSHENG ZHANG
(Manchester University)
Abstract

We consider Brownian motion with Kato class measure-valued drift.   A small time large deviation principle and a Varadhan type asymptotics for the Brownian motion with singular drift are established. We also study the existence and uniqueness of the associated Dirichlet boundary value problems.

Mon, 11 Feb 2019

14:15 - 15:15
L3

'Semilinear PDE and hydrodynamic limits of particle systems on fractals'

MICHAEL HINZ
(University Bielefeld)
Abstract

We first give a short introduction to analysis and stochastic processes on fractal state spaces and the typical difficulties involved.

We then discuss gradient operators and semilinear PDE. They are used to formulate the main result which establishes the hydrodynamic limit of the weakly asymmetric exclusion process on the Sierpinski gasket in the form of a law of large numbers for the particle density. We will explain some details and, if time permits, also sketch a corresponding large deviations principle for the symmetric case.

Mon, 11 Feb 2019
12:45
L5

String theory compactifications with sources

Alessandro Tomasiello
(Milano)
Further Information


In recent years, more and more compactifications have emerged whose existence depends crucially on the presence of internal sources to the supergravity fields, such as D-branes and orientifold planes. I will review some solutions of this type in various dimensions, and illustrate their applications to holography and potentially to the problem of finding de Sitter solutions.
 

Fri, 08 Feb 2019

16:45 - 17:45
L6

Commutative-by-finite Hopf algebras

Ken Brown
Abstract

Roughly speaking, a commutative-by-finite Hopf algebra is a Hopf
algebra which is an extension of a commutative Hopf algebra by a
finite dimensional Hopf algebra.
There are many big and significant classes of such algebras
(beyond of course the commutative ones and the finite dimensional ones!).
I'll make the definition precise, discuss examples
and review results, some old and some new.
No previous knowledge of Hopf algebras is necessary.
 

Fri, 08 Feb 2019

15:00 - 16:00
L3

HOCHSCHILD COHOMOLOGY AND GERSTENHABER BRACKET OF A FAMILY OF SUBALGEBRAS OF THE WEYL ALGEBRA

Andrea Solotar
Abstract

For a polynomial $h(x)$ in $F[x]$, where $F$ is any field, let $A$ be the
$F$-algebra given by generators $x$ and $y$ and relation $[y, x]=h$.
This family of algebras include the Weyl algebra, enveloping algebras of
$2$-dimensional Lie algebras, the Jordan plane and several other
interesting subalgebras of the Weyl algebra.

In a joint work in progress with Samuel Lopes, we computed the Hochschild
cohomology $HH^*(A)$ of $A$ and determined explicitly the Gerstenhaber
structure of $HH^*(A)$, as a Lie module over the Lie algebra $HH^1(A)$.
In case $F$ has characteristic $0$, this study has revealed that $HH^*(A)$
has finite length as a Lie module over $HH^1(A)$ with pairwise
non-isomorphic composition factors and the latter can be naturally
extended into irreducible representations of the Virasoro algebra.
Moreover, the whole action can be understood in terms of the partition
formed by the multiplicities of the irreducible factors of the polynomial
$h$.
 

Fri, 08 Feb 2019

14:00 - 15:00
C2

The mechanism of formation of grounding zone wedges in three dynamical regimes

Katarzyna Kowal
(DAMTP University of Cambridge)
Abstract

Ice streams are fast flowing regions of ice that generally slide over a layer of unconsolidated, water-saturated subglacial sediment known as till.  A striking feature that has been observed geophysically is that subglacial till has been found to accumulate distinctively into sedimentary wedges at the grounding zones (regions where ice sheets begin to detach from the bedrock to form freely floating ice shelves) of both past and present-day ice sheets. These grounding-zone wedges have important implications for ice-sheet stability against grounding zone retreat in response to rising sea levels, and their origins have remained a long-standing question. Using a combination of mathematical modelling, a series of laboratory experiments, field data and numerical simulations, we develop a fluid-mechanical model that explains the mechanism of the formation of these sedimentary wedges in terms of the loading and unloading of deformable till in three dynamical regimes. We also undertake a series of analogue laboratory experiments, which reveal that a similar wedge of underlying fluid accumulates spontaneously in experimental grounding zones, we formulate local conditions relating wedge slopes in each of the scenarios and compare them to available geophysical radargram data at the well lubricated, fast-flowing Whillans Ice Stream.

Fri, 08 Feb 2019

14:00 - 15:00
L1

Mathematics: the past, present and future – "Mathematical Biology: How the Leopard is Changing its Spots"

Prof Philip Maini
Abstract

Mathematical biology has grown enormously over the past 40 years and has changed considerably. At first, biology inspired mathematicians to come up with models that could, at an abstract level, "explain" biological phenomena - one of the most famous being Alan Turing's model for biological pattern formation. However, with the enormous recent advances in biotechnology and computation, the field is now truly inter- and multi-disciplinary. We shall discuss the changing role mathematics is playing in applications to biology and medicine.

Fri, 08 Feb 2019

14:00 - 15:00
L3

Untangling heterogeneity in DNA replication with nanopore sequencing

Dr Michael Boemo
(Sir William Dunn School of Pathology University of Oxford)
Abstract

Genome replication is a stochastic process whereby each cell exhibits different patterns of origin activation and replication fork movement.  Despite this heterogeneity, replication is a remarkably stable process that works quickly and correctly over hundreds of thousands of iterations. Existing methods for measuring replication dynamics largely focus on how a population of cells behave on average, which precludes the detection of low probability errors that may have occurred in individual cells.  These errors can have a severe impact on genome integrity, yet existing single-molecule methods, such as DNA combing, are too costly, low-throughput, and low-resolution to effectively detect them.  We have created a method that uses Oxford Nanopore sequencing to create high-throughput genome-wide maps of DNA replication dynamics in single molecules.  I will discuss the informatics approach that our software uses, our use of mathematical modelling to explain the patterns that we observe, and questions in DNA replication and genome stability that our method is uniquely positioned to answer.

Fri, 08 Feb 2019

12:00 - 13:00
L5

An algebraic approach to Harder-Narasimhan filtrations

Hippolito Treffinger
Abstract

Given a stability condition defined over a category, every object in this category
is filtered by some distinguished objects called semistables. This
filtration, that is unique up-to-isomorphism, is know as the
 Harder-Narasimhan filtration.
One less studied property of stability conditions, when defined over an
 abelian category, is the fact that each of them induce a chain of torsion
classes that is naturally indexed.
 In this talk we will study arbitrary indexed chain of torsion classes. Our
first result states that every indexed chain of torsion classes induce a
 Harder-Narasimhan filtration. Following ideas from Bridgeland we
 show that the set of all indexed chains of torsion classes satisfying a mild 
 technical condition forms a topological space. If time we
 will characterise the neighbourhood or some distinguished points. 

Fri, 08 Feb 2019

12:00 - 13:00
L4

Leveraging the Signature for Landmark-based Human Action Recognition

Weixin Yang
(University of Oxford)
Abstract

Landmark-based human action recognition in videos is a challenging task in computer vision. One crucial step is to design discriminative features for spatial structure and temporal dynamics. To this end, we use and refine the path signature as an expressive, robust, nonlinear, and interpretable representation for landmark-based streamed data. Instead of extracting signature features from raw sequences, we propose path disintegrations and transformations as preprocessing to improve the efficiency and effectiveness of signature features. The path disintegrations spatially localize a pose into a collection of m-node paths from which the signatures encode non-local and non-linear geometrical dependencies, while temporally transform the evolutions of spatial features into hierarchical spatio-temporal paths from which the signatures encode long short-term dynamical dependencies. The path transformations allow the signatures to further explore correlations among different informative clues. Finally, all features are concatenated to constitute the input vector of a linear fully-connected network for action recognition. Experimental results on four benchmark datasets demonstrated that the proposed feature sets with only linear network achieves comparable state-of-the-art result to the cutting-edge deep learning methods. 

Thu, 07 Feb 2019
17:00
L5

Intermediate models of ZF

Asaf Karagila
(Norwich)
Abstract

Starting with a countable transitive model of V=L, we show that by 
adding a single Cohen real, c, most intermediate models do no satisfy choice. In 
fact, most intermediate models to L[c] are not even definable.

The key part of the proof is the Bristol model, which is intermediate to L[c], 
but is not constructible from a set. We will give a broad explanation of the 
construction of the Bristol model within the constraints of time.

Thu, 07 Feb 2019

16:00 - 17:00
L6

Bohr sets and multiplicative diophantine approximation

Sam Chow
(Oxford University)
Abstract

Gallagher's theorem is a strengthening of the Littlewood conjecture that holds for almost all pairs of real numbers. I'll discuss some recent refinements of Gallagher's theorem, one of which is joint work with Niclas Technau. A key new ingredient is the correspondence between Bohr sets and generalised arithmetic progressions. It is hoped that these are the first steps towards a metric theory of multiplicative diophantine approximation on manifolds. 

Thu, 07 Feb 2019
16:00
C4

The Nielsen-Thurston theory of surface automorphisms

Mehdi Yazdi
(Oxford University)
Abstract

I will give an overview of the Nielsen-Thurston theory of the mapping class group and its connection to hyperbolic geometry and dynamics. Time permitting, I will discuss the surface entropy conjecture and a theorem of Hamenstadt on entropies of `generic' elements of the mapping class group. No prior knowledge of the concepts involved is required.

Thu, 07 Feb 2019

16:00 - 17:30
L3

Fracture dynamics in foam: Finite-size effects

Dr. Peter Stewart
(University of Glasgow)
Abstract

Injection of a gas into a gas/liquid foam is known to give rise to instability phenomena on a variety of time and length scales. Macroscopically, one observes a propagating gas-filled structure that can display properties of liquid finger propagation as well as of fracture in solids. Using a discrete model, which incorporates the underlying film instability as well as viscous resistance from the moving liquid structures, we describe brittle cleavage phenomena in line with experimental observations. We find that  the dimensions of the foam sample significantly affect the speed of the  cracks as well as the pressure necessary to sustain them: cracks in wider samples travel faster at a given driving stress, but are able to avoid arrest and maintain propagation at a lower pressure (the  velocity gap becomes smaller). The system thus becomes a study case for stress concentration and the transition between discrete and continuum systems in dynamical fracture; taking into account the finite dimensions of the system improves agreement with experiment.

Thu, 07 Feb 2019

14:00 - 15:00
L4

Polynomial approximation of high-dimensional functions - from regular to irregular domains

Prof. Ben Adcock
(Simon Fraser University)
Abstract

Driven by its numerous applications in computational science, the approximation of smooth, high-dimensional functions via sparse polynomial expansions has received significant attention in the last five to ten years.  In the first part of this talk, I will give a brief survey of recent progress in this area.  In particular, I will demonstrate how the proper use of compressed sensing tools leads to new techniques for high-dimensional approximation which can mitigate the curse of dimensionality to a substantial extent.  The rest of the talk is devoted to approximating functions defined on irregular domains.  The vast majority of works on high-dimensional approximation assume the function in question is defined over a tensor-product domain.  Yet this assumption is often unrealistic.  I will introduce a method, known as polynomial frame approximation, suitable for broad classes of irregular domains and present theoretical guarantees for its approximation error, stability, and sample complexity.  These results show the suitability of this approach for high-dimensional approximation through the independence (or weak dependence) of the various guarantees on the ambient dimension d.  Time permitting, I will also discuss several extensions.

Thu, 07 Feb 2019
12:00
L4

Nonlinear Stein theorem for differential forms

Swarnendu Sil
(ETH Zurich)
Abstract

Stein ($1981$) proved the borderline Sobolev embedding result which states that for $n \geq 2,$ $u \in L^{1}(\mathbb{R}^{n})$ and $\nabla u \in L^{(n,1)}(\mathbb{R}^{n}; \mathbb{R}^{n})$ implies $u$ is continuous. Coupled with standard Calderon-Zygmund estimates for Lorentz spaces, this implies $u \in C^{1}(\mathbb{R}^{n})$ if $\Delta u \in L^{(n,1)}(\mathbb{R}^{n}).$ The search for a nonlinear generalization of this result culminated in the work of Kuusi-Mingione ($2014$), which proves the same result for $p$-Laplacian type systems. \paragraph{} In this talk, we shall discuss how these results can be extended to differential forms. In particular, we can prove that if $u$ is an $\mathbb{R}^{N}$-valued $W^{1,p}_{loc}$ $k$-differential form with $\delta \left( a(x) \lvert du \rvert^{p-2} du \right) \in L^{(n,1)}_{loc}$ in a domain of $\mathbb{R}^{n}$ for $N \geq 1,$ $n \geq 2,$ $0 \leq k \leq n-1, $ $1 < p < \infty, $ with uniformly positive, bounded, Dini continuous scalar function $a$, then $du$ is continuous.

Wed, 06 Feb 2019
16:00
C1

Cross ratios on boundaries of negatively curved spaces

Elia Fioravanti
(Oxford University)
Abstract

I will give a self-contained introduction to the theory of cross ratios on boundaries of Gromov hyperbolic and CAT(-1) spaces, focussing on the connections to the following two questions. When are two spaces with the 'same' Gromov boundary isometric/quasi-isometric? Are closed Riemannian manifolds completely determined (up to isometry) by the lengths of their closed geodesics?

Wed, 06 Feb 2019
11:00
N3.12

RSK Insertion and Symmetric Polynomials

Adam Keilthy
(University of Oxford)
Abstract

Young diagrams frequently appear in the study of partitions and representations of the symmetric group. By filling these diagrams with numbers, we obtain Young tableau, combinatorial objects onto which we can define the structure of a monoid via insertion algorithms. We will explore this structure and it's connection to a basis of the ring of symmetric polynomials. If we have time, we will mention alternative monoid structures and their corresponding bases.

Tue, 05 Feb 2019

17:00 - 18:15
L1

James Maynard - Prime Time: How simple questions about prime numbers affect us all

James Maynard
(University of Oxford)
Further Information

Why should anyone care about primes? Well, prime numbers are important, not just in pure mathematics, but also in the real world. Various different, difficult problems in science lead to seemingly very simple questions about prime numbers. Unfortunately, these seemingly simple problems have stumped mathematicians for thousands of years, and are now some of the most notorious open problems in mathematics!

Oxford Research Professor James Maynard is one of the brightest young stars in world mathematics at the moment, having made dramatic advances in analytic number theory in recent years. 

Please email @email to register.

Watch live:

https://www.facebook.com/OxfordMathematics/
https://livestream.com/oxuni/Maynard

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Tue, 05 Feb 2019

15:30 - 16:30
L4

Generalized Polar Geometry

Sandra di Rocco
(KTH)
Abstract

Polar classes are very classical objects in Algebraic Geometry. A brief introduction to the subject will be presented and ideas and preliminarily results towards generalisations will be explained. These ideas can be applied towards variety sampling and relevant applications. 
 

Tue, 05 Feb 2019

14:30 - 15:00
L5

An Introduction to Persistent Homology

Vidit Nanda
(Oxford)
Abstract

This talk will feature a brief introduction to persistent homology, the vanguard technique in topological data analysis. Nothing will be required of the audience beyond a willingness to row-reduce enormous matrices (by hand if we can, by machine if we must).

Tue, 05 Feb 2019
14:15
L4

Towards a generic representation theory

David Craven
(Birmingham)
Abstract

In combinatorics, the 'nicest' way to prove that two sets have the same size is to find a bijection between them, giving more structure to the seeming numerical coincidences. In representation theory, many of the outstanding conjectures seem to imply that the characteristic p of the ground field can be allowed to vary, and we can relate different groups and different primes, to say that they have 'the same' representation theory. In this talk I will try to make precise what we could mean by this

Tue, 05 Feb 2019

14:00 - 14:30
L5

An introduction to classical time-parallelisation methods

Giancarlo Antonucci
(Oxford)
Abstract

For decades, researchers have been studying efficient numerical methods to solve differential equations, most of them optimised for one-core processors. However, we are about to reach the limit in the amount of processing power we can squeeze into a single processor. This explains the trend in today's computing industry to design high-performance processors looking at parallel architectures. As a result, there is a need to develop low-complexity parallel algorithms capable of running efficiently in terms of computational time and electric power.

Parallelisation across time appears to be a promising way to provide more parallelism. In this talk, we will introduce the main algorithms, following (Gander, 2015), with a particular focus on the parareal algorithm.

Tue, 05 Feb 2019

12:45 - 13:30
C3

A Boundary Layer Analysis for the Initiation of Reactive Shear Bands

Robert Timms
(Oxford University)
Abstract

Unintended low energy thermal or mechanical stimuli can lead to the accidental ignition of explosive materials. During such events, described as ‘insults’ in the literature, ignition of the explosive is caused by localised regions of high temperature known as ‘hot spots’. We develop a model which helps us to understand how highly localised shear deformation, so-called shear banding, acts as a mechanism for hot spot generation. Through a boundary layer analysis, we give a deeper insight into how the additional self heating caused by chemical reactions affects the initiation and development of shear bands,  and highlight the key physical properties which control this process.

Tue, 05 Feb 2019
12:00
L4

Unitarity bounds on charged/neutral state mass ratio.

Dr Congkao Wen
(QMUL)
Abstract

I will talk about the implications of UV completion of quantum gravity on the low energy spectrums. I will introduce the constraints on low-energy effective theory due to unitarity and analyticity of scattering amplitudes, in particular an infinite set of new unitarity constraints on the forward-limit limit of four-point scattering amplitudes due to the work of Arkani-Hamed et al. In three dimensions, we find the constraints imply that light states with charge-to-mass ratio z greater than 1 can only be consistent if there exists other light states, preferably neutral. Applied to the 3D Standard Model like spectrum, where the low energy couplings are dominated by the electron with z \sim 10^22, this provides a novel understanding of the need for light neutrinos.

Tue, 05 Feb 2019

12:00 - 13:00
C4

Nonparametric inference of atomic network structures

Anatol Wegner
(University College London)
Abstract

Many real-world networks contain small recurring connectivity patterns also known as network motifs. Although network motifs are widely considered to be important structural features of networks that are closely connected to their function methods for characterizing and modelling the local connectivity structure of complex networks remain underdeveloped. In this talk, we will present a non-parametric approach that is based on generative models in which networks are generated by adding not only single edges but also but also copies of larger subgraphs such as triangles to the graph. We show that such models can be formulated in terms of latent states that correspond to subgraph decompositions of the network and derive analytic expressions for the likelihood of such models. Following a Bayesian approach, we present a nonparametric prior for model parameters. Solving the resulting inference problem results in a principled approach for identifying atomic connectivity patterns of networks that do not only identify statistically significant connectivity patterns but also produces a decomposition of the network into such atomic substructures. We tested the presented approach on simulated data for which the algorithm recovers the latent state to a high degree of accuracy. In the case of empirical networks, the method identifies concise sets atomic subgraphs from within thousands of candidates that are plausible and include known atomic substructures.

Mon, 04 Feb 2019

16:00 - 17:00
L4

Ginzburg–Landau functionals with a general compact vacuum manifold on planar domains

Jean Van Schaftingen
(Universite catholique de louvain)
Abstract

Ginzburg–Landau type functionals provide a relaxation scheme to construct harmonic maps in the presence of topological obstructions. They arise in superconductivity models, in liquid crystal models (Landau–de Gennes functional) and in the generation of cross-fields in meshing. For a general compact manifold target space we describe the asymptotic number, type and location of singularities that arise in minimizers. We cover in particular the case where the fundamental group of the vacuum manifold in nonabelian and hence the singularities cannot be characterized univocally as elements of the fundamental group. The results unify the existing theory and cover new situations and problems.

This is a joint work with Antonin Monteil and Rémy Rodiac (UCLouvain, Louvain- la-Neuve, Belgium)

Mon, 04 Feb 2019
15:45
L6

Slice discs in stabilized 4-balls

Matthias Nagel
(Oxford)
Abstract


We recall the impact of stabilizing a 4-manifold with $S^2 \times S^2$. The corresponding local situation concerns knots in the 3-sphere which bound (nullhomotopic) discs in a stabilized 4-ball. We explain how these discs arise, and discuss bounds on the minimal number of stabilizations needed. Then we compare this minimal number to the 4-genus.
This is joint work with A. Conway.

Mon, 04 Feb 2019

15:45 - 16:45
L3

The parabolic Anderson model in 2 d, mass- and eigenvalue asymptotics

WILLEM VAN ZUIJLEN
(WIAS Berlin)
Abstract


In this talk I present work in progress with Wolfgang König and Nicolas Perkowski on the parabolic Anderson model (PAM) with white noise potential in 2d. We show the behavior of the total mass as the time tends to infinity. By using partial Girsanov transform and singular heat kernel estimates we can obtain the mass-asymptotics by using the eigenvalue asymptotics that have been showed in another work in progress with Khalil Chouk. 

Mon, 04 Feb 2019

14:15 - 15:15
L3

Space-time localisation for the dynamic $\Phi^4_3$ model

HENDRIK WEBER
(University of Bath)
Abstract

We prove an a priori bound for solutions of the dynamic $\Phi^4_3$ equation.

This bound provides a control on solutions on a compact space-time set only in terms of the realisation of the noise on an enlargement of this set, and it does not depend on any choice of space-time boundary conditions.

We treat the  large and small scale behaviour of solutions with completely different arguments.For small scales we use bounds akin to those presented in Hairer's theory of regularity structures. We stress immediately that our proof is fully self-contained, but we give a detailed explanation of how our arguments relate to Hairer's. For large scales we use a PDE argument based on the maximum principle. Both regimes are connected by a solution-dependent regularisation procedure.

The fact that our bounds do not depend on space-time boundary conditions makes them useful for the analysis of large scale properties of solutions. They can for example be used in a compactness argument to construct solutions on the full space and their invariant measures

Mon, 04 Feb 2019
14:15
L4

Gluing methods for Vortex dynamics in Euler flows

Manuel del Pino
(Bath University)
Abstract

We consider the two-dimensional Euler flow for an incompressible fluid confined to a smooth domain. We construct smooth solutions with concentrated vorticities around $k$ points which evolve according to the Hamiltonian system for the Kirkhoff-Routh energy,  using an outer-inner solution gluing approach. The asymptotically singular profile  around each point resembles a scaled finite mass solution of Liouville's equation.
We also discuss the {\em vortex filament conjecture} for the three-dimensional case. This is joint work with Juan D\'avila, Monica Musso and Juncheng Wei.

 

Mon, 04 Feb 2019

13:00 - 14:00
N3.12

Mathematrix - Meet Vicky Neale

Further Information

Sharing her academic path and experience with teaching and outreach

Mon, 04 Feb 2019
12:45
L5

Large-N Non-Supersymmetric 6D CFTs: Hologram or Mirage?

Fabio Abruzzi
(Oxford)
Abstract

In this talk I will present a large class of non-supersymmetric AdS7 solutions of IIA supergravity, and their (in)stabilities. I will start by reviewing supersymmetric AdS7 solutions of 10D supergravity dual to 6D (1,0) SCFTs. I will then focus on their non-supersymmetric counterpart, discussing how they are related. The connection between supersymmetric and non-supersymmetric solutions leads to a hint for the SUSY breaking mechanism, which potentially allows to evade some of the assumptions of the Ooguri-Vafa Conjecture about the AdS landscape. A big subset of these solutions shows a curious pattern of perturbative instabilities whenever many open-string modes are considered. On the other hand an infinite class remains apparently stable.

Fri, 01 Feb 2019

14:00 - 15:00
L1

What are employers looking for in Mathematical graduates?

Erica Tyson
Further Information

IMA Careers Workshop

Abstract

Would you employ you? What are employers looking for in Mathematical graduates? What kind of work can use your skills? This workshop will get your minds thinking about the possibilities after you have finished studying and will cover:

·         General careers’ information starting from a mathematical sciences degree

·         Things to think about at CV and interview stage

·         How membership of a professional body (the IMA) supports your applications and career development.

·         Information about the Mathematics Teacher Training Scholarships

Thu, 31 Jan 2019
17:00
L5

Z + PROVI

A.R.D. Mathias
(Université de la Réunion)
Abstract

Here Z is Zermelo’s set theory of 1908, as later formulated: full separation, but no replacement or collection among its axioms. PROVI was presented in lectures in Cambridge in 2010 and later published with improvements by Nathan Bowler, and is, I claim, the weakest subsystem of ZF to support a recognisable theory of set forcing: PROV is PROVI shorn of its axiom of infinity. The provident sets are the transitive non-empty models of PROV. The talk will begin with a presentation of PROV, and then discuss more recent applications and problems: in particular an answer in the system Z + PROV to a question posed by Eugene Wesley in 1972 will be sketched, and two proofs (fallacious, I hope) of 0 = 1 will be given, one using my slim models of Z and the other applying the Spector–Gandy theorem to certain models of PROVI. These “proofs”, when re-interpreted, supply some arguments of Reverse Mathematics.

Thu, 31 Jan 2019

16:00 - 17:00
L6

Is a random polynomial irreducible?

Dimitris Koukoulopoulos
(Université de Montréal)
Abstract

Given a "random" polynomial over the integers, it is expected that, with high probability, it is irreducible and has a big Galois group over the rationals. Such results have been long known when the degree is bounded and the coefficients are chosen uniformly at random from some interval, but the case of bounded coefficients and unbounded degree remained open. Very recently, Emmanuel Breuillard and Peter Varju settled the case of bounded coefficients conditionally on the Riemann Hypothesis for certain Dedekind zeta functions. In this talk, I will present unconditional progress towards this problem, joint with Lior Bary-Soroker and Gady Kozma.

Thu, 31 Jan 2019

16:00 - 17:30
L3

Poroelastic propagation and pancakes: understanding why supraglacial lakes spread but Venutian lava domes stop

Dr. Jerome Neufeld
(University of Cambridge)
Abstract

Many fluid flows in natural systems are highly complex, with an often beguilingly intricate and confusing detailed structure. Yet, as with many systems, a good deal of insight can be gained by testing the consequences of simple mathematical models that capture the essential physics.  We’ll tour two such problems.  In the summer melt seasons in Greenland, lakes form on the surface of the ice which have been observed to rapidly drain.  The propagation of the meltwater in the subsurface couples the elastic deformation of the ice and, crucially, the flow of water within the deformable subglacial till.  In this case the poroelastic deformation of the till plays a subtle, but crucial, role in routing the surface meltwater which spreads indefinitely, and has implications for how we think about large-scale motion in groundwater aquifers or geological carbon storage.  In contrast, when magma erupts onto the Earth’s surface it flows before rapidly cooling and crystallising.  Using analogies from the kitchen we construct, and experimentally test, a simple model of what sets the ultimate extent of magmatic intrusions on Earth and, as it turns out, on Venus.  The results are delicious!  In both these cases, we see how a simplified mathematical analysis provides insight into large scale phenomena.

Thu, 31 Jan 2019

16:00 - 17:30
L4

Machine learning for volatility

Dr Martin Tegner
(Department of Engineering and Oxford Man Institute)
Further Information

The main focus of this talk will be a nonparametric approach for local volatility. We look at the calibration problem in a probabilistic framework based on Gaussian process priors. This gives a way of encoding prior believes about the local volatility function and a model which is flexible yet not prone to overfitting. Besides providing a method for calibrating a (range of) point-estimate(s), we draw posterior inference from the distribution over local volatility. This leads to a principled understanding of uncertainty attached with the calibration. Further, we seek to infer dynamical properties of local volatility by augmenting the input space with a time dimension. Ideally, this provides predictive distributions not only locally, but also for entire surfaces forward in time. We apply our approach to S&P 500 market data.

 

In the final part of the talk we will give a short account of a nonparametric approach to modelling realised volatility. Again we take a probabilistic view and formulate a hypothesis space of stationary processes for volatility based on Gaussian processes. We demonstrate on the S&P 500 index.

Thu, 31 Jan 2019
16:00
C4

Holonomic D-modules, b-functions, and coadmissibility

Andreas Bode
(Oxford University)
Abstract

Since differentiation generally lowers exponents, it is straightforward that the space of Laurent polynomials $\mathbb{C}[x, x^{-1}]$ is a finitely generated module over the ring of differential operators $\mathbb{C}[x, \mathrm{d}/\mathrm{d}x]$. This innocent looking fact has been vastly generalized to a statement about holonomic D-modules, using the beautiful theory of b-functions (or Bernstein—Sato polynomials). I will give an overview of the classical theory before discussing some recent developments concerning a $p$-adic analytic analogue, which is joint work with Thomas Bitoun.