16:30
The Travelling Santa Problem and Other Seasonal Challenges
Abstract
Our Christmas Public Lecture this year will be presented by Marcus du Sautoy who will be examining an aspect of Christmas not often considered: the mathematics.
To register please email: @email
The Oxford Mathematics Christmas Lecture is generously sponsored by G-Research - Researching investment ideas to predict financial markets
16:00
On the Tukey structure of ultrafilters
15:00
Technical history of discrete logarithms in small characteristic finite fields
Abstract
Due to its use in cryptographic protocols such as the Diffie--Hellman key exchange, the discrete logarithm problem attracted a considerable amount of attention in the past 40 years. In this talk, we summarize the key technical ideas and their evolution for the case of discrete logarithms in small characteristic finite fields. This road leads from the original belief that this problem was hard enough for cryptographic purpose to the current state of the art where the algorithms are so efficient and practical that the problem can no longer be considered for cryptographic use.
Ada Lovelace Symposium
Abstract
For full details please visit:
http://blogs.bodleian.ox.ac.uk/adalovelace/files/2015/10/Ada-Lovelace-S…
Biaxiality in liquid crystals at low temperatures (Please note Week 9)
Abstract
We study the low-temperature limit in the Landau-de Gennes theory for liquid crystals. We prove that for minimizers for orientable Dirichlet data tend to be almost uniaxial but necessarily contain some biaxiality around the singularities of a limiting harmonic map. In particular we prove that around each defect there must necessarily exist a maximal biaxiality point, a point with a purely uniaxial configuration with a positive order parameter, and a point with a purely uniaxial configuration with a negative order parameter. Estimates for the size of the biaxial cores are also given.
This is joint work with Apala Majumdar and Adriano Pisante.
14:15
The effect of lateral stresses on the flow of ice shelves and their role in stabilizing marine ice sheets
Abstract
It has been conjectured that marine ice sheets (those that
flow into the ocean) are unconditionally unstable when the underlying
bed-slope runs uphill in the direction of flow, as is typical in many
regions underneath the West Antarctic Ice Sheet. This conjecture is
supported by theoretical studies that assume a two-dimensional flow
idealization. However, if the floating section (the ice shelf) is
subject to three-dimensional stresses from the edges of the embayments
into which they flow, as is typical of many ice shelves in Antarctica,
then the ice shelf creates a buttress that supports the ice sheet.
This allows the ice sheet to remain stable under conditions that may
otherwise result in collapse of the ice sheet. This talk presents new
theoretical and experimental results relating to the effects of
three-dimensional stresses on the flow and structure of ice shelves,
and their potential to stabilize marine ice sheets.
Transmural propagation of the action potential in mammalian hearts: marrying experimental and theoretical studies
Abstract
Transmural propagation is a little studied feature of mammalian electrophysiology, this talk reviews our experimental work using different optical techniques to characterise this mode
of conduction under physiological and pathophysiological conditions.
Killed Brownian motion with a prescribed lifetime distribution and models of default
Abstract
In finance, the default time of a counterparty is sometimes modeled as the
first passage time of a credit index process below a barrier. It is
therefore relevant to consider the following question:
If we know the distribution of the default time, can we find a unique
barrier which gives this distribution? This is known as the Inverse
First Passage Time (IFPT) problem in the literature.
We consider a more general `smoothed' version of the inverse first
passage time problem in which the first passage time is replaced by
the first instant that the time spent below the barrier exceeds an
independent exponential random variable. We show that any smooth
distribution results from some unique continuously differentiable
barrier. In current work with B. Ettinger and T. K. Wong, we use PDE
methods to show the uniqueness and existence of solutions to a
discontinuous version of the IFPT problem.
Analysis of images in multidimensional single molecule microscopy
Abstract
Multidimensional single molecule microscopy (MSMM) generates image time series of biomolecules in a cellular environment that have been tagged with fluorescent labels. Initial analysis steps of such images consist of image registration of multiple channels, feature detection and single particle tracking. Further analysis may involve the estimation of diffusion rates, the measurement of separations between molecules that are not optically resolved and more. The analysis is done under the condition of poor signal to noise ratios, high density of features and other adverse conditions. Pushing the boundary of what is measurable, we are facing among others the following challenges. Firstly the correct assessment of the uncertainties and the significance of the results, secondly the fast and reliable identification of those features and tracks that fulfil the assumptions of the models used. Simpler models require more rigid preconditions and therefore limiting the usable data, complexer models are theoretically and especially computationally challenging.
17:30
Near-henselian fields - valuation theory in the language of rings
Abstract
Abstract: (Joint work with Sylvy Anscombe) We consider four properties
of a field K related to the existence of (definable) henselian
valuations on K and on elementarily equivalent fields and study the
implications between them. Surprisingly, the full pictures look very
different in equicharacteristic and mixed characteristic.
A Theorem by Thom
Abstract
In 1954 Thom showed that there is an isomorphism between the cobordism groups of manifolds and the homotopy groups of the Thom spectrum. I will define what these words mean and present the explicit, geometric construction of the isomorphism.
Predictable Forward Performance Processes (joint work with B. Angoshtari and X.Y. Zhou)
Abstract
In this talk, I will present a family of forward performance processes in
discrete time. These processes are predictable with regards to the market
information. Examples from a binomial setting will be given which include
the time-monotone exponential forward process and the completely monotonic
family.
Galois theory of periods and applications
Abstract
A period is a certain type of number obtained by integrating algebraic differential forms over algebraic domains. Examples include pi, algebraic numbers, values of the Riemann zeta function at integers, and other classical constants.
Difficult transcendence conjectures due to Grothendieck suggest that there should be a Galois theory of periods.
I will explain these notions in very introductory terms and show how to set up such a Galois theory in certain situations.
I will then discuss some applications, in particular to Kim's method for bounding $S$-integral solutions to the equation $u+v=1$, and possibly to high-energy physics.
Sharp interface limit in a phase field model of cell motility
Abstract
We study the motion of a eukaryotic cell on a substrate and investigate the dependence of this motion on key physical parameters such as strength of protrusion by actin filaments and adhesion. This motion is modeled by a system of two PDEs consisting of the Allen-Cahn equation for the scalar phase field function coupled with a vectorial parabolic equation for the orientation of the actin filament network. The two key properties of this system are (i) presence of gradients in the coupling terms and (ii) mass (volume) preservation constraints. We pass to the sharp interface limit to derive the equation of the motion of the cell boundary, which is mean curvature motion perturbed by a novel nonlinear term. We establish the existence of two distinct regimes of the physical parameters. In the subcritical regime, the well-posedness of the problem is proved (M. Mizuhara et al., 2015). Our main focus is the supercritical regime where we established surprising features of the motion of the interface such as discontinuities of velocities and hysteresis in the 1D model, and instability of the circular shape and rise of asymmetry in the 2D model. Because of properties (i)-(ii), classical comparison principle techniques do not apply to this system. Furthermore, the system can not be written in a form of gradient flow, which is why Γ-convergence techniques also can not be used. This is joint work with V. Rybalko and M. Potomkin.
Fast computation of the semiclassical Schrödinger equation
Abstract
Equations of quantum mechanics in the semiclassical regime present an enduring challenge for numerical analysts, because their solution is highly oscillatory and evolves on two scales. Standard computational approaches to the semiclassical Schrödinger equation do not allow for long time integration as required, for example, in quantum control of atoms by short laser bursts. This has motivated our approach of asymptotic splittings. Combining techniques from Lie-algebra theory and numerical algebra, we present a new computational paradigm of symmetric Zassenhaus splittings, which lends itself to a very precise discretisation in long time intervals, at very little cost. We will illustrate our talk by examples of quantum phenomena – quantum tunnelling and quantum scattering – and their computation and, time allowing, discuss an extension of this methodology to time-dependent semiclassical systems using Magnus expansions
Weak solutions to the Navier-Stokes initial boundary value problem in exterior domains with initial data in L(3,∞)
Abstract
We consider the Navier-Stokes initial boundary value problem (NS-IBVP) in a smooth exterior domain. We are interested in establishing existence of weak solutions (we mean weak solutions as synonym of solutions global in time) with an initial data in L(3,∞)
11:00
'On the model theory of representations of rings of integers'
Abstract
following the joint paper with L.Shaheen http://people.maths.ox.ac.uk/zilber/wLb.pdf
16:00
Quasihomomorphisms with non-commutative target
Abstract
Quasihomomorphisms (QHMs) are maps $f$ between groups such that the
homomorphic condition is boundedly satisfied. The case of QHMs with
abelian target is well studied and is useful for computing the second
bounded cohomology of groups. The case of target non-abelian has,
however, not been studied a lot.
We will see a technique for classifying QHMs $f: G \rightarrow H$ by Fujiwara and
Kapovich. We will give examples (sometimes with proofs!) for QHM in
various cases such as
- the image $H$ hyperbolic groups,
- the image $H$ discrete rank one isometries,
- the preimage $G$ cyclic / free group, etc.
Furthermore, we point out a relation between QHM and extensions by short
exact sequences.
Global well-posedness of the energy critical Maxwell-Klein-Gordon equation
Abstract
The massless Maxwell-Klein-Gordon system describes the interaction between an electromagnetic field (Maxwell) and a charged massless scalar field (massless Klein-Gordon, or wave). In this talk, I will present a recent proof, joint with D. Tataru, of global well-posedness and scattering of this system for arbitrary finite energy data in the (4+1)-dimensional Minkowski space, in which the PDE is energy critical.
16:00
Countable dynamics
Abstract
We know that the existence of a period three point for an interval map implies much about the dynamics of the map, but the restriction of the map to the periodic orbit itself is trivial. Countable invariant subsets arise naturally in many dynamical systems, for example as $\omega$-limit sets, but many of the usual notions of dynamics degenerate when restricted to countable sets. In this talk we look at what we can say about dynamics on countable compact spaces. In particular, the theory of countable dynamical systems is the theory of the induced dynamics on countable invariant subsets of the interval and the theory of homeomorphic countable dynamics is the theory of compact countable invariant subsets of homeomorphisms of the plane.
Joint work with Columba Perez
Representation Dimension and Quasihereditary algebras
Abstract
The representation dimension of an algebra was introduced in the early 70's by M. Auslander, with the goal of measuring how far an algebra is from having finite number of finitely generated indecomposable modules (up to isomorphism). This invariant is not well understood. For instance, it was not until 2002 that O. Iyama proved that every algebra has finite representation dimension. This was done by constructing special quasihereditary algebras. In this talk I will give an introduction to this topic and I shall briefly explain Iyama's construction.