Thu, 12 Nov 2015

16:00 - 17:30
L4

Safe-Haven CDS Premia

David Lando
(Cophenhagon Business School)
Abstract

We argue that Credit Default Swap (CDS) premia for safe-haven sovereigns, like Germany and the United States, are driven to a large extent by regulatory requirements under which  derivatives dealing banks have an incentive to buy CDS to hedge counterparty credit risk of their counterparties.
We explain the mechanics of the regulatory requirements and develop a model in which derivatives dealers, who have a derivatives exposure with sovereigns, need CDS for capital relief. End users without exposure to the sovereigns sell the CDS and require a positive premium equivalent to the capital requirement. The model's predictions are confirmed using data on several sovereigns.

 

Joint with OMI

Thu, 12 Nov 2015

16:00 - 17:00
L5

Iwasawa theory for the symmetric square of a modular form - Cancelled

Sarah Zerbes
(University College London)
Abstract

I will discuss some new results on the Iwasawa theory for the $3$-dimensional symmetric square Galois representation of a modular form, using the Euler system of Beilinson-Flach elements I constructed in joint work with Kings, Lei and Loeffler.

Thu, 12 Nov 2015

16:00 - 17:00
L3

Inferring the large-scale structure of networks

Tiago Peixoto
(University of Bremen)
Abstract

Networks form the backbones of a wide variety of complex systems,
ranging from food webs, gene regulation and social networks to
transportation networks and the internet. Due to the sheer size and
complexity of many of theses systems, it remains an open challenge to
formulate general descriptions of their large-scale structures.
Although many methods have been proposed to achieve this, many of them
yield diverging descriptions of the same network, making both the
comparison and understanding of their results very
difficult. Furthermore, very few methods attempt to gauge the
statistical significance of the uncovered structures, and hence the
majority cannot reliably separate actual structure from stochastic
fluctuations.  In this talk, I will show how these issues can be tackled
in a principled fashion by formulating appropriate generative models of
network structure that can have their parameters inferred from data. I
will also consider the comparison between a variety of generative
models, including different structural features such as degree
correction, where nodes with arbitrary degrees can belong to the same
group, and community overlap, where nodes are allowed to belong to more
than one group. Because such model variants possess an increased number
of parameters, they become prone to overfitting. We demonstrate how
model selection based on the minimum description length criterion and
posterior odds ratios can fully account for the increased degrees of
freedom of the larger models, and selects the most appropriate trade-off
between model complexity and quality of fit based on the statistical
evidence present in the data.

Throughout the talk I will illustrate the application of the methods
with many empirical networks such as the internet at the autonomous
systems level, the global airport network, the network of actors and
films, social networks, citations among websites, co-occurrence of
disease-causing genes and many others.
 

Thu, 12 Nov 2015

14:00 - 15:00
L4

The monoidal structure on strict polynomial functors and adjoints of the Schur functor

Rebecca Reischuk
(Bielefeld)
Abstract

Firstly, we will discuss how the category of strict polynomial functors can be endowed with a monoidal structure, including concrete calculations. It is well-known that the above category is equivalent to the category of modules over the Schur algebra. The so-called Schur functor in turn relates the category of modules over the Schur algebra to the category of representations of the symmetric group which posseses a monoidal structure given by the Kronecker product. We show that the Schur functor is monoidal with respect to these structures.
Finally, we consider the right and left adjoints of the Schur functor. We explain how these can be expressed in terms of one another using Kuhn duality and the central role the monoidal structure on strict polynomial functors plays in this context.
 

Thu, 12 Nov 2015

14:00 - 15:00
L5

Multilevel optimization

Professor Philippe Toint
(University of Namur)
Abstract

The talk will introduce the concepts of multilevel optimization and motivate them in the context of problems arising from the discretization of infinite dimensional applications. It will be shown how optimization methods can accomodate a number of useful (and classical) ideas from the multigrid
community, and thereby produce substantial efficiency improvements compared to existing large-scale minimization techniques.  Two different classes of multilevel methods will be discussed: trust-region and linesearch algorithms.
The first class will be described in the context of a multilevel generalization of the well-known trust-region-Newton method.  The second will focus on limited-memory quasi-Newton algorithms.  Preliminary numerical results will be presented which indicate that both types of multilevel algorithms may be practically very advantageous.

Thu, 12 Nov 2015

12:00 - 13:00
L6

Energy decay in a 1D coupled heat-wave system

David Seifert
(University of Oxford)
Abstract

We study a simple one-dimensional coupled heat wave system, obtaining a sharp estimate for the rate of energy decay of classical solutions. Our approach is based on the asymptotic theory of $C_0$-semigroups and in particular on a result due to Borichev and Tomilov (2010), which reduces the problem of estimating the rate of energy decay to finding a growth bound for the resolvent of the semigroup generator. This technique not only leads to an optimal result, it is also simpler than the methods used by other authors in similar situations and moreover extends to problems on higher-dimensional domains. Joint work with C.J.K. Batty (Oxford) and L. Paunonen (Tampere).

Wed, 11 Nov 2015
16:00
C1

The Flat Closing Conjecture

Robert Kropholler
(Oxford)
Abstract

I will discuss a notoriously hard problem in group theory known as the flat closing conjecture. This states that a group with a finite classifying space is either hyperbolic or contains a Baumslag-Solitar Subgroup. I will give some strategies to try and create a counterexample to this conjecture. 

Wed, 11 Nov 2015
15:00
L4

Quantum superposition attacks on symmetric encryption protocols

Ruediger Schack
(Royal Holloway, University of London)
Abstract

Quantum computers derive their computational power from the ability to manipulate superposition states of quantum registers. The generic quantum attack against a symmetric encryption scheme with key length n using Grover's algorithm has O(2^(n/2)) time complexity. For this kind of attack, an adversary only needs classical access to an encryption oracle. In this talk I discuss adversaries with quantum superposition access to encryption and decryption oracles. First I review and extend work by Kuwakado and Morii showing that a quantum computer with superposition access to an encryption oracle can break the Even-Mansour block cipher with key length n using only O(n) queries. Then, improving on recent work by Boneh and Zhandry, I discuss indistinguishability notions in chosen plaintext and chosen ciphertext attacks by a quantum adversary with superposition oracle access and give constructions that achieve these security notions.

Tue, 10 Nov 2015

15:45 - 16:45
L4

The spectrum of the inertia operator on the motivic Hall algebra

Kai Behrend
(UBC Vancouver)
Abstract

Following an idea of Bridgeland, we study the operator on the K-group of algebraic stacks, which takes a stack to its inertia stack.  We prove that the inertia operator is diagonalizable when restricted to nice enough stacks, including those with algebra stabilizers.  We use these results to prove a structure theorem for the motivic Hall algebra of a projective variety, and give a more conceptual definition of virtually indecomposable stack function.  This is joint work with Pooya Ronagh.

Tue, 10 Nov 2015
14:30
L6

Finding structures in random graphs economically

Pedro Vieira
(ETH Zurich)
Abstract

We discuss a new setting of algorithmic problems in random graphs, studying the minimum number of queries one needs to ask about the adjacency between pairs of vertices of $G(n,p)$ in order to typically find a subgraph possessing a certain structure. More specifically, given a monotone property of graphs $P$, we consider $G(n,p)$ where $p$ is above the threshold probability for $P$ and look for adaptive algorithms which query significantly less than all pairs of vertices in order to reveal that the property $P$ holds with high probability. In this talk we focus particularly on the properties of containing a Hamilton cycle and containing paths of linear size. The talk is based on joint work with Asaf Ferber, Michael Krivelevich and Benny Sudakov.

Tue, 10 Nov 2015

14:15 - 15:15
L4

Some infinite permutation groups

Cheryl Praeger
(UWA)
Abstract

Our work (which is joint with Simon Smith) began as a study of the structure of infinite permutation groups $G$ in which point stabilisers are finite and all infinite normal subgroups are transitive. That led to two variations. One is the generalisation in which point stabilisers are merely assumed to satisfy min-{\sc N}, the minimal condition on normal subgroups. The groups $G$ are then of two kinds. Either they have a maximal finite normal subgroup, modulo which they have either one or two minimal non-trivial normal subgroups, or they have a regular normal subgroup $M$ which is a divisible abelian $p$-group of finite rank. In the latter case the point stabilisers are finite and act irreducibly on the socle of~$M$. This leads to our second variation, which is a study of the finite linear groups that can arise.

Tue, 10 Nov 2015

14:00 - 15:00
L5

BFO: a Brute Force trainable algorithm for mixed-integer and multilevel derivative-free optimization

Philippe Toint
(University of Namur)
Abstract

The talk will describe a new "Brute Force Optimizer" whose objective is to provide a very versatile derivative-free Matlab package for bound-constrained optimization, with the distinctive feature that it can be trained to improve its own performance on classes of problems specified by the user (rather than on a single-but-wide problem class chosen by the algorithm developer).  In addition, BFO can be used to optimize the performance of other algorithms and provides facilities for mixed-integer and multilevel problems, including constrained equilibrium calculations.

Mon, 09 Nov 2015

16:00 - 17:00
C2

Characterising the integers in the rationals

Philip Dittmann
(Oxford University)
Abstract

Starting from Hilbert's 10th problem, I will explain how to characterise the set of integers by non-solubility of a set of polynomial equations and discuss related challenges. The methods needed are almost entirely elementary; ingredients from algebraic number theory will be explained as we go along. No knowledge of first-order logic is necessary.

Mon, 09 Nov 2015

16:00 - 17:00
C2

Characterising the Integers in the Rationals

Philip Dittmann
(Oxford)
Abstract

Starting from Hilbert's 10th problem, I will explain how to characterise the set of integers by non-solubility of a set of polynomial equations and discuss related challenges. The methods needed are almost entirely elementary; ingredients from algebraic number theory will be explained as we go along. No knowledge of first-order logic is necessary.

Mon, 09 Nov 2015

16:00 - 17:00
L5

Instance optimality for the maximum strategy

Lars Diening
(University of Osnabruck)
Abstract

We study the adaptive finite element approximation of the Dirichlet problem $-\Delta u = f$ with zero boundary values using newest vertex bisection. Our approach is based on the minimization of the corresponding Dirichlet energy. We show that the maximums strategy attains every energy level with a number of degrees of freedom, which is proportional to the optimal number. As a consequence we achieve instance optimality of the error. This is a joint work with Christian Kreuzer (Bochum) and Rob Stevenson (Amsterdam).

Mon, 09 Nov 2015

15:45 - 16:45
Oxford-Man Institute

: Gradient estimates for Brownian bridges to submanifolds

JAMES THOMPSON
(University of Warwick)
Abstract

Abstract: A diffusion process on a Riemannian manifold whose generator is one half of the Laplacian is called a Brownian motion. The mean local time of Brownian motion on a hypersurface will be considered, as will the situation in which a Brownian motion is conditioned to arrive in a fixed submanifold at a fixed positive time. Doing so provides motivation for the remainder of the talk, in which a probabilistic formula for the integral of the heat kernel over a submanifold is proved and used to deduce lower bounds, an asymptotic relation and derivative estimates applicable to the conditioned process.

 

Mon, 09 Nov 2015
15:45
L6

Koszul duality patterns in Floer theory

Yanki Lekili
(King's College London)
Abstract

We study symplectic invariants of the open symplectic manifolds X
obtained by plumbing cotangent bundles of spheres according to a
plumbing tree. We prove that certain models for the Fukaya category F(X)
of closed exact Lagrangians in X and the wrapped Fukaya category W(X)
are related by Koszul duality. As an application, we give explicit
computations of symplectic cohomology essentially for all trees. This is
joint work with Tolga Etg\"u.

Mon, 09 Nov 2015

14:15 - 15:15
Oxford-Man Institute

Tightness and duality of martingale transport on the Skorokhod space

TAN XIAOLU
(University of Paris Dauphine)
Abstract

Abstract: The martingale optimal transport aims to optimally transfer a probability measure to another along the class of martingales. This problem is mainly motivated by the robust superhedging of exotic derivatives in financial mathematics, which turns out to be the corresponding Kantorovich dual. In this paper we consider the continuous-time martingale transport on the Skorokhod space of cadlag paths. Similar to the classical setting of optimal transport, we introduce different dual problems and establish the corresponding dualities by a crucial use of the S-topology and the dynamic programming principle. This is a joint work with Gaoyue Guo and Nizar Touzi.

Mon, 09 Nov 2015

12:00 - 13:00
L3

Yang-Mills origin of gravitational symmetries

Mike Duff
(Imperial College)
Abstract

By regarding gravity as the convolution of left and right Yang-Mills theories together with a spectator scalar field in the bi-adjoint representation, we derive in linearised approximation the gravitational symmetries of general covariance, p-form gauge invariance, local Lorentz invariance and local supersymmetry from the flat space Yang-Mills symmetries of local gauge invariance and global super-Poincare. As a concrete example we focus on the new-minimal (12+12) off-shell version of simple four-dimensional supergravity obtained by tensoring the off-shell Yang-Mills multiplets (4+4,NL =1)and(3+0,NR =0). 

 
Fri, 06 Nov 2015
14:15
C3

Rapid Supraglacial Lake Drainages on the Greenland Ice Sheet: Observations, Inverse Modeling, and Mechanisms for Triggering Drainage

Laura Stevens
(MIT/WHOI)
Abstract

Across much of the ablation region of the western Greenland Ice Sheet, hydro-fracture events related to supraglacial lake drainages rapidly deliver large volumes of meltwater to the bed of the ice sheet. We investigate what triggers the rapid drainage of a large supraglacial lake using a Network Inversion Filter (NIF) to invert a dense local network of GPS observations over three summers (2011-2013). The NIF is used to determine the spatiotemporal variability in ice sheet behavior (1) prior to lake drainage, and in response to (2) vertical hydro-fracture crack propagation and closure, (3) the opening of a horizontal cavity at the ice-sheet bed that accommodates the rapid injection of melt-water, and (4) extra basal slip due to enhanced lubrication. We find that the opening and propagation of each summer’s lake-draining hydro-fracture is preceded by a local stress perturbation associated with ice sheet uplift and enhanced slip above pre-drainage background velocities. We hypothesize that these precursors are associated with the introduction of meltwater to the bed through neighboring moulin systems.