17:00
``An analogue of the Conjecture of Dixmier is true for the algebra of polynomial integro-differential operators''
Abstract
In 1968, Dixmier posed six problems for the algebra of polynomial
differential operators, i.e. the Weyl algebra. In 1975, Joseph
solved the third and sixth problems and, in 2005, I solved the
fifth problem and gave a positive solution to the fourth problem
but only for homogeneous differential operators. The remaining three problems are still open. The first problem/conjecture of Dixmier (which is equivalent to the Jacobian Conjecture as was shown in 2005-07 by Tsuchimito, Belov and Kontsevich) claims that the Weyl algebra `behaves'
like a finite field. The first problem/conjecture of
Dixmier: is it true that an algebra endomorphism of the Weyl
algebra an automorphism? In 2010, I proved that this question has
an affirmative answer for the algebra of polynomial
integro-differential operators. In my talk, I will explain the main
ideas, the structure of the proof and recent progress on the first problem/conjecture of Dixmier.