16:00
Arbitrary Levels of belief in Rationality in Strategic Games
Abstract
TBA
TBA
This talk will introduce various aspects of modern cryptography. After introducing RSA and some factoring algorithms, I will move on to how elliptic curves can be used to produce a more complex form of Diffie--Hellman key exchange.
We introduce Outer space, a contractible finite dimensional topological space on which the outer automorphism group of a free group acts 'nicely.' We will explain what 'nicely' is, and provide motivation with comparisons to symmetric spaces, analogous spaces associated to linear groups.
Following work of Bridgeland in the smooth case and Chen in the terminal singularities case, I will explain a proposal that extends the existence of flops for threefolds (and the required derived equivalences) to also cover canonical singularities. Moreover this technique conjecturally says much more than just the existence of the flop, as it shows how the dual graph changes under the flop and also which curves in the flopped variety contract to points without contracting divisors. This allows us to continue the Minimal Model Programme on the flopped variety in an easy way, thus producing many varieties birational to the given input.
Due to the scaling properties of the Navier-Stokes equations,
homogeneous initial data may lead to forward self-similar solutions.
When the initial data is small enough, it is well known that the
formalism of mild solutions (through the Picard-Duhamel formula) give
such self-similar solutions. We shall discuss the issue of large initial
data, where we can only prove the existence of weak solutions; those
solutions may lack self-similarity, due to the fact that we have no
results about uniqueness for such weak solutions. We study some tools
which may be useful to get a better understanding of those weak solutions.
Suppose that $C$ and $C'$ are cubic forms in at least 19 variables over a
$p$-adic field $k$. A special case of a conjecture of Artin is that the
forms $C$ and $C'$ have a common zero over $k$. While the conjecture of
Artin is false in general, we try to argue that, in this case, it is
(almost) correct! This is still work in progress (joint with
Heath-Brown), so do not expect a full answer.
As a historical note, some cases of Artin's conjecture for certain
hypersurfaces are known. Moreover, Jahan analyzed the case of the
simultaneous vanishing of a cubic and a quadratic form. The approach
we follow is closely based on Jahan's approach, thus there might be
some overlap between his talk and this one. My talk will anyway be
self-contained, so I will repeat everything that I need that might
have already been said in Jahan's talk.
Abstract: There has in the last year been much progresson the universality problem for the spectra of a Wigner random matrices, i.e.Hermitian or symmetric random matrices with independent elements. I will givesome background on this problem and also discuss what can be said when we onlyassume a few moments of the matrix elements to be finite.
A copolymer is a chain of repetitive units (monomers) that
are almost identical, but they differ in their degree of
affinity for certain solvents. This difference leads to striking
phenomena when the polymer fluctuates
in a non-homogeneous medium, for example made up by two solvents
separated by an interface.
One may observe, for exmple, the localization of the polymer at the
interface between the two solvents.
Much of the literature on the subject focuses on the most basic model
based on the simple symmetric random walk on the integers, but
E. Bolthausen and F. den Hollander (AP 1997) pointed out
the convergence of the (rescaled) free energy of such a discrete model
toward
the free energy of a continuum model, based on Brownian motion,
in the limit of weak polymer-solvent coupling. This result is
remarkable because it strongly suggests
a universal feature for copolymer models. In this work we prove that
this is indeed the case. More precisely,
we determine the weak coupling limit for a general class of discrete
copolymer models, obtaining as limits
a one-parameter (alpha in (0,1)) family of continuum models, based on
alpha-stable regenerative sets.
This is a review of hep-th/0912.4912
McBurnie: “Sound propagation through bubbly liquids”.
Hewett: "Switching on a time-harmonic acoustic source".
When the human eye looks at a distant object, the lens is held in a state of tension by a set of fibres (known as zonules) that connect the lens to the ciliary body. To view a nearby object, the ciliary muscle (which is part of the ciliary body) contracts. This reduces the tension in the zonules, the lens assumes a thicker and more rounded shape and the optical power of the eye increases.
This process is known as accommodation.
With increased age, however, the accommodation mechanism becomes increasingly ineffective so that, from an age of about 50 years onwards, it effectively ceases to function. This condition is known as presbyopia. There is considerable interest in the ophthalmic community on developing a better understanding of the ageing processes that cause presbyopia. As well as being an interesting scientific question in its own right, it is hoped that this improved understanding will lead to improved surgical procedures (e.g. to re-start the accommodation process in elderly cataract patients).
Let R be a number field (or a recursive subring of anumber field) and consider the polynomial ring R[T].
We show that the set of polynomials with integercoefficients is diophantine (existentially definable) over R[T].
Applying a result by Denef, this implies that everyrecursively enumerable subset of R[T]^k is diophantine over R[T].
Some years ago Hall and Smith in a number of papers developed a theory governing the interaction of vortices and waves in shear flows. In recent years immense interest has been focused on so-called self-sustained processes in turbulent shear flows where the importance of waves interacting with streamwise vortex flows has been elucidated in a number of; see for example the work of Waleffe and colleagues, Kerswell, Gibson, etc. These processes have a striking resemblance to coherent structures observed in turbulent shear flow and for that reason they are often referred to as exact coherent structures. It is shown that the structures associated with the so-called 'lower branch' state, which has been shown to play a crucial role in these self-sustained process, is nothing but a Rayleigh wave vortex interaction with a wave system generating streamwise vortices inside a critical layer. The theory enables the reduction of the 3D Navier Stokes equations to a coupled system for a steady streamwise vortex and an inviscid wave system. The reduced system for the streamwise vortices must be solved with jump conditions in the shear across the critical layer and the position of that layer constitutes a nonlinear pde eigenvalue problem. Remarkable agreement between the asymptotic theory and numerical simulations is found thereby demonstrating the importance of vortex-wave interaction theory in the mathematical description of coherent structures in turbulent shear flows. The theory offers the possibility of drag reduction in turbulent shear flows by controlling the flow to the neighborhood of the lower branch state. The relevance of the work to more general shear flows is also discussed.