Fri, 13 Jun 2008
14:15
DH 1st floor SR

Informative Traders

Dorje Brody
(Imperial)
Abstract

A modelling framework is introduced in which there is a small agent who is more susceptible to the flow of information in the market as compared to the general market participants. In this framework market participants have access to a stream of noisy information concerning the future returns of the asset, whereas an informative trader has access to an additional information source which is also obscured by further noise, which may be correlated with the market noise. The informative trader utilises the extraneous information source to seek statistical arbitrage opportunities, in exchange with accommodating the additional risk. The information content of the market concerning the value of the impending cash flow is represented by the mutual information of the asset price and the associated cash flow. The worthiness of the additional information source is then measured in terms of the difference of mutual information between market participants and the informative trader. This difference is shown to be strictly nonnegative for all parameter values in the model, when signal-to-noise ratio is known in advance. Trading strategies making use of the additional information are considered. (Talk is based on joint work with M.H.A. Davis (Imperial) & R.L. Friedman (Imperial & Royal Bank of Scotland).

Thu, 12 Jun 2008
16:00
L3

Characterizing Z in Q with a universal-existential formula

Bjorn Poonen
(Berkeley)
Abstract

Refining Julia Robinson's 1949 work on the undecidability of the first order theory of Q, we prove that Z is definable in Q by a formula with 2 universal quantifiers followed by 7 existential quantifiers. It follows that there is no algorithm for deciding, given an algebraic family of Q-morphisms, whether there exists one that is surjective on rational points.

Thu, 12 Jun 2008

12:00 - 13:00
L3

An Introduction to the Birational Classification of Surfaces

Alan Thompson
(University of Oxford)
Abstract

The birational classification of varieties is an interesting and ongoing problem in algebraic geometry. This talk aims to give an

overview of the progress made on this problem in the special case where the varieties considered are surfaces in projective space.

Tue, 10 Jun 2008
14:30
L3

The Lee-Yang program and P\'olya-Schur theory

Julius Borcea
(Stockholm)
Abstract

Linear operators preserving non-vanishing properties are an important

tool in e.g. combinatorics, the Lee-Yang program on phase transitions, complex analysis, matrix theory. We characterize all linear operators on spaces of multivariate polynomials preserving the property of being non-vanishing when the variables are in prescribed open circular domains, which solves the higher dimensional counterpart of a long-standing classification problem going back to P\'olya-Schur. This also leads to a self-contained theory of multivariate stable polynomials and a natural framework for dealing with Lee-Yang and Heilmann-Lieb type problems in a uniform manner. The talk is based on joint work with Petter Brändén.

Tue, 10 Jun 2008
12:00
L3

Relativistic Figures of Equilibrium

Prof. R. Meinel
(Jena)
Abstract

In this talk I shall review analytical and numerical results on equilibrium configurations of rotating fluid bodies within Einstein's theory of gravitation.

Mon, 09 Jun 2008

17:00 - 18:00
L3

Uniqueness of Lagrangian trajectories for weak solutions of the two- and three-dimensional Navier-Stokes equations

James Robinson
(Warwick)
Abstract

I will discuss recent results concerning the uniqueness of Lagrangian particle trajectories associated to weak solutions of the Navier-Stokes equations. In two dimensions, for which the weak solutions are unique, I will present a mcuh simpler argument than that of Chemin & Lerner that guarantees the uniqueness of these trajectories (this is joint work with Masoumeh Dashti, Warwick). In three dimensions, given a particular weak solution, Foias, Guillopé, & Temam showed that one can construct at leaset one trajectory mapping that respects the volume-preserving nature of the underlying flow. I will show that under the additional assumption that $u\in L^{6/5}(0,T;L^\infty)$ this trajectory mapping is in fact unique (joint work with Witek Sadowski, Warsaw).

Mon, 09 Jun 2008
15:45
Oxford-Man Institute

Brownian Entropic Repulsion

Dr Nathanael Berestycki
(Cambridge)
Abstract

We consider one-dimensional Brownian motion conditioned (in a suitable

sense) to have a local time at every point and at every moment bounded by some fixed constant. Our main result shows that a phenomenon of entropic repulsion occurs: that is, this process is ballistic and has an asymptotic velocity approximately 4.5860... as high as required by the conditioning (the exact value of this constant involves the first zero of a Bessel function). I will also describe other conditionings of Brownian motion in which this principle of entropic repulsion manifests itself.

Joint work with Itai Benjamini.

Mon, 09 Jun 2008
14:10
Oxford-Man Institute

t2/3-scaling of current variance in interacting particle systems

Dr Marton Balazs
(Budapest University of Technology and Economics)
Abstract

Particle current is the net number of particles that pass an observer who moves with a deterministic velocity V. Its fluctuations in time-stationary interacting particle systems are nontrivial and draw serious attention. It has been known for a while that in most models diffusive scaling and the corresponding Central Limit Theorem hold for this quantity. However, such normal fluctuations disappear for a particular value of V, called the characteristic speed.

For this velocity value, the correct scaling of particle current fluctuations was shown to be t1/3 and the limit distribution was also identified by K. Johansson in 2000 and later by P. L. Ferrari and H. Spohn in 2006. These results use heavy combinatorial and analytic tools, and their application is limited to a few particular models, one of which is the totally asymmetric simple exclusion process (TASEP). I will explain a purely probabilistic, more robust approach that provides the t2/3-scaling of current variance, but not the limit distribution, in (non-totally) asymmetric simple exclusion (ASEP) and some other particle systems. I will also point out a key feature of the models which allows the proof of such universal behaviour.

Joint work with Júlia Komjáthy and Timo Seppälläinen)

Mon, 09 Jun 2008

12:00 - 13:00
Gibson 1st Floor SR

OxMOS Team Meeting

Christoph Ortner and Gareth Jones
(Oxford)
Mon, 09 Jun 2008

12:00 - 13:00
L3

`Exceptional' generalised geometry and superpotentials

Dan Waldram
(Imperial College)
Abstract
Abstract: We discuss an extension of Hitchin's generalised geometry, based on the exceptional groups, that provides a unified geometrical description of supersymmetric flux backgrounds in eleven-dimensional supergravity. We focus on N=1 seven-dimensional compactifications. The background is characterised by an element phi, the analogue of the generalised complex structure, that lies in a particular orbit of the 912 representation of E7. As an application we show that the four-dimensional effective superpotential takes a universal form, that is, a homogeneous E7-invariant functional of phi.
Fri, 06 Jun 2008
16:30
L2

Towards the Sato-Tate Conjecture for pairs of elliptic curves

Prof. Michael Harris
(Université Paris VII)
Abstract
Let E be an elliptic curve defined by a cubic equation with rational coefficients.
The Sato-Tate Conjecture is a statistical assertion about the variation of the number of points of E over finite fields. I review some of the main steps in my proof of this conjecture with Clozel, Shepherd-Barron, and Taylor, in the case when E has non-integral j-invariant. Emphasis will be placed on the steps involving moduli spaces of certain Calabi-Yau hypersurfaces with level structure.

If one admits a version of the stable trace formula that should soon be available, the same techniques imply that, when E and E' are two elliptic curves that are not isogenous, then the numbers of their points over finite fields are statistically independent. For reasons that have everything to do with the current limits to our understanding of the Langlands program, the analogous conjectures for three or more non-isogenous elliptic curves are entirely out of reach.