Tue, 15 Jan 2008

11:00 - 12:00
L3

Quantum reasoning, diagrammatically, automatically

Bob Coecke (Computing Lab)
Abstract

We provide both a diagrammatic and logical system to reason about

quantum phenomena. Essential features are entanglement, the flow of

information from the quantum systems into the classical measurement

contexts, and back---these flows are crucial for several quantum informatic

scheme's such as quantum teleportation---, and mutually unbiassed

observables---e.g. position and momentum. The formal structures we use are

kin to those of topological quantum field theories---e.g. monoidal

categories, compact closure, Frobenius objects, coalgebras. We show that

our diagrammatic/logical language is universal. Informal

appetisers can be found in:

* Introducing Categories to the Practicing Physicist

http://web.comlab.ox.ac.uk/oucl/work/bob.coecke/Cats.pdf

* Kindergarten Quantum Mechanics

http://arxiv.org/abs/quant-ph/0510032

Mon, 14 Jan 2008

15:00 - 16:00
DH 3rd floor SR

Phase field modelling and simulation of some interface problems

Professor Qiang Du
(Penn State University)
Abstract

Professor Qiang Du will go over some work on modelling interface/microstructures with curvature dependent energies and also the effect of elasticity on critical nuclei morphology.

Mon, 14 Jan 2008
14:45
Oxford-Man Institute

On some generalized reinforced random walks on integers

Prof. Olivier Raimond
(Universite Paris-Sud XI)
Abstract

This is a joint work with Bruno Schapira, and it is a work in progress.

We study recurrence and transience properties of some edge reinforced random walks on the integers: the probability to go from $x$ to $x+1$ at time $n$ is equal to $f(\alpha_n^x)$ where $\alpha_n^x=\frac{1+\sum_{k=1}^n 1_{(X_{k-1},X_k)=(x,x+1)}}{2+\sum_{k=1}^n 1_{X_{k-1}=x}}$. Depending on the shape of $f$, we give some sufficient criteria for recurrence or transience of these walks

Mon, 14 Jan 2008
14:45
L3

Volumes of knot complements

Jessica Purcell
(Oxford)
Abstract

The complement of a knot or link is a 3-manifold which admits a geometric

structure. However, given a diagram of a knot or link, it seems to be a

difficult problem to determine geometric information about the link

complement. The volume is one piece of geometric information. For large

classes of knots and links with complement admitting a hyperbolic

structure, we show the volume of the link complement is bounded by the

number of twist regions of a diagram. We prove this result for a large

collection of knots and links using a theorem that estimates the change in

volume under Dehn filling. This is joint work with Effie Kalfagianni and

David Futer

Mon, 14 Jan 2008
13:15
Oxford-Man Institute

Optimal transport and curvature (monge meets Riemann)

Prof. Cedric Villani
(ENS Lyon)
Abstract

Born in France around 1780, the optimal transport problem has known a scientific explosion in the past two decades, in relation with dynamical systems and partial differential equations. Recently it has found unexpected applications in Riemannian geometry, in particular the encoding of Ricci curvature bounds

Mon, 14 Jan 2008

11:00 - 12:00
L3

Special Geometry over $\mathbb C$ and $\mathbb Q_p$

Philip Candelas
(Oxford)
Abstract
Abstract: The moduli space of Calabi-Yau manifolds have a natural geometrical structure that has come to be known as special geometry. This geometry will be reviewed in the complex context and it will be shown that much of the structure persists for p-adic Calabi-Yau manifolds.
Thu, 10 Jan 2008
10:30
L3

Profinite completion and MacNeille completion can coincide on modal algebras

Jacob Vosmaer
(Amsterdam)
Abstract

We show that the profinite completion (a universal algebraic

construction) and the MacNeille completion (an order-theoretic

construction) of a modal algebra $A$ coincide, precisely when the congruences of finite index of $A$ correspond to principal order filters. Examples of such modal algebras are the free K4-algebra and the free PDL-algebra on finitely many generators.

Mon, 03 Dec 2007

13:15 - 14:15
L3

Floer cohomology of Lagrangian spheres in symplectic manifolds

Jean-Yves Welschinger
(Lyons)
Abstract

I will associate, to every pair of smooth transversal

Lagrangian spheres in a symplectic manifold having vanishing first Chern

class, its Floer cohomology groups. Hamiltonian isotopic spheres give

rise to isomorphic groups. In order to define these Floer cohomology

groups, I will make a key use of symplectic field theory.

Thu, 29 Nov 2007

14:00 - 15:00
Comlab

Polynomials and potential theory for Gaussian radial basis function interpolation

Dr Rodrigo Platte
(University of Oxford)
Abstract

Radial basis function (RBF) methods have been successfully used to approximate functions in multidimensional complex domains and are increasingly being used in the numerical solution of partial differential equations. These methods are often called meshfree numerical schemes since, in some cases, they are implemented without an underlying grid or mesh.

The focus of this talk is on the class of RBFs that allow exponential convergence for smooth problems. We will explore the dependence of accuracy and stability on node locations of RBF interpolants. Because Gaussian RBFs with equally spaced centers are related to polynomials through a change of variable, a number of precise conclusions about convergence rates based on the smoothness of the target function will be presented. Collocation methods for PDEs will also be considered.

Thu, 29 Nov 2007

13:30 - 14:30
L3

An introduction to higher-dimensional category theory

Eugenia Cheng
(Sheffield)
Abstract

Category theory is used to study structures in various branches of

mathematics, and higher-dimensional category theory is being developed to

study higher-dimensional versions of those structures. Examples include

higher homotopy theory, higher stacks and gerbes, extended TQFTs,

concurrency, type theory, and higher-dimensional representation theory. In

this talk we will present two general methods for "categorifying" things,

that is, for adding extra dimensions: enrichment and internalisation. We

will show how these have been applied to the definition and study of

2-vector spaces, with 2-representation theory in mind. This talk will be

introductory; in particular it should not be necessary to be familiar with

any category theory other than the basic idea of categories and functors.