Fri, 02 Nov 2007
15:30
L2

From Weyl type asymptotics to Lieb-Thirring inequalities

Prof Ari Laptev
(Imperial College, London)
Abstract

We shall begin with simple Weyl type asymptotic formulae for the spectrum of Dirichlet Laplacians and eventually prove a new result which I have recently obtained, jointly with J. Dolbeault and M. Loss. Following Eden and Foias, we derive a matrix version of a generalised Sobolev inequality in one dimension. This allows us to improve on the known estimates of best constants in Lieb-Thirring inequalities for the sum of the negative eigenvalues for multi-dimensional Schrödinger operators.

Bio: Ari Laptev received his PhD in Mathematics from Leningrad University (LU) in 1978, under the supervision of Michael Solomyak. He is well known for his contributions to the Spectral Theory of Differential Operators. Between 1972 - 77 and 1977- 82 he was employed as a junior researcher and as Assistant Professor at the Mathematics & Mechanics Department of LU. In 1981- 82 he held a post-doc position at the University of Stockholm and in 1982 he lost his position at LU due to his marriage to a British subject. Up until his emigration to England in 1987 he was working as a builder, constructing houses in small villages in the Novgorod district of Russia. In 1987 he was employed in Sweden, first as a lecturer at Linköping University and then from 1992 at the Royal Institute of Technology (KTH). In 1999 he became a professor at KTH and also Vice Chairman of its Mathematics Department. In 1992 he was granted Swedish citizenship. Ari Laptev was the President of the Swedish Mathematical Society from 2001 to 2003 and the President of the Organizing Committee of the Fourth European Congress of Mathematics in Stockholm in 2004. From January 2007 he has been employed by Imperial College London. Ari Laptev has supervised twelve PhD students. From January 2007 until the end of 2010 he is President of the European Mathematical Society.

Thu, 01 Nov 2007
15:00
L3

The Circle Problem

Peter Swinnerton-Dyer
(Cambridge)
Abstract

Let N(A) be the number of integer solutions of x^2 + y^2

Thu, 01 Nov 2007

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Communication avoiding algorithms for dense LU and QR factorizations

Dr Laura Grigori
(INRIA)
Abstract

We present algorithms for dense LU and QR factorizations that minimize the cost of communication. One of today's challenging technology trends is the increased communication cost. This trend predicts that arithmetic will continue to improve exponentially faster than bandwidth, and bandwidth exponentially faster than latency. The new algorithms for dense QR and LU factorizations greatly reduce the amount of time spent communicating, relative to conventional algorithms.

This is joint work with James Demmel, Mark Hoemmen, Julien Langou, and Hua Xiang.

Thu, 01 Nov 2007

11:00 - 12:00
SR1

Hyperbolic 3-manifolds

Liam Wall
(University of Oxford)
Abstract

In this talk I will introduce hyperbolic 3-manifolds, state some major conjectures about them, and discuss some group-theoretic properties of their fundamental groups.

Tue, 30 Oct 2007
15:30
L3

Infinite locally random graphs

Pierre Charbit
(Paris)
Abstract
The Rado Graph R is a graph on a countably infinite number of vertices that can be characterized by the following property: for every pair of finite, disjoint subsets of vertices X and Y, there exists a vertex that is adjacent to every vertex in X and none in Y. It is often called the Random Graph for the following reason: for any 0

Tue, 30 Oct 2007
13:30
L3

Random polytopes

Matthias Reitzner
(Vienna)
Abstract
Let $K \subset {\mathbb R}^d$ be a convex set. Choose $n$ random points in $K$, and denote by $P_n$ their convex hull. We call $P_n$ a random polytope. Investigations concerning the expected value of functionals of $P_n$, like volume, surface area, and number of vertices, started in 1864 with a problem raised by Sylvester and now are a classical part of stochastic and convex geometry. The last years have seen several new developments about distributional aspects of functionals of random polytopes. In this talk we concentrate on these recent results such as central limit theorems and tail inequalities, as the number of random points tends to infinity.
Tue, 30 Oct 2007
11:00
L3

Towards a proof of a rigidity conjecture for asymptotically flat spacetimes

Juan Valiente Kroon
(Queen Mary College, London)
Abstract

I will discuss ongoing work to provide a proof for the following

conjecture: if the development of a time symmetric, conformally flat

initial data set admits a smooth null infinity, then the initial data

is Schwarzschildean in a neighbourhood of infinity. The strategy

to construct a proof consists in a detailed analysis of a

certain type of expansions that can be obtained using H. Friedrich's

"cylinder at infinity" formalism. I will also discuss a toy model for

the analysis of the Maxwell field near the

spatial infinity of the Schwarzschild spacetime

Mon, 29 Oct 2007

15:00 - 16:00
SR1

The Tschinkel Problem

Nic Niedermowwe
(Mathematical Institute Oxford)
Mon, 29 Oct 2007
14:45
Oxford-Man Institute

On signed probability measures and some old results of Krylov

Prof. Terry Lyons
(Oxford)
Abstract

It is an interesting exercise to compute the iterated integrals of Brownian Motion and to calculate the expectations (of polynomial functions of these integrals).

Recent work on constructing discrete measures on path space, which give the same value as Wiener measure to certain of these expectations, has led to promising new numerical algorithms for solving 2nd order parabolic PDEs in moderate dimensions. Old work of Krylov associated finitely additive signed measures to certain constant coefficient PDEs of higher order. Recent work with Levin allows us to identify the relevant expectations of iterated integrals in this case, leaving many interesting open questions and possible numerical algorithms for solving high dimensional elliptic PDEs.