14:15
14:15
Propagation in a non-local reaction-diffusion equation
Abstract
The first reaction-diffusion equation developed and studied is the Fisher-KPP equation. Introduced in 1937, it accounts for the spatial spreading and growth of a species. Understanding this population-dynamics model is equivalent to understanding the distribution of the maximum particle in a branching Brownian motion. Various generalizations of this model have been studied in the eighty years since its introduction, including a model with non-local reaction for the cane toads of Australia introduced by Benichou et. al. I will begin the talk by giving an extended introduction on the Fisher-KPP equation and the typical behavior of its solutions. Afterwards, I will describe the model for the cane toads equations and give new results regarding this model. In particular, I will show how the model may be viewed as a perturbation of a local equation using a new Harnack-type inequality and I will discuss the super-linear in time propagation of the toads. The talk is based on a joint work with Bouin and Ryzhik.
---
Scientific writing
Abstract
Writing is a part of any career in science or mathematics. I will make some remarks about the role writing has played in my life and the role it might play in yours.
Uncertainty and sensitivity analysis of cardiac cell models -- insights from Gaussian process emulators
InFoMM CDT Group Meeting - Introduction to Niall, Rachel & Ozzy's Research (includes complementary lunch)
Abstract
The InFoMM CDT Group Meetings will follow the format of the OCIAM group meetings. We hope they will facilitate good communication between the Academic and Student community so that the research activities remain closely connected, opportunities for additional interaction are easily identified, and cross-fertilisation of ideas can be catalysed.
Group Meeting
Abstract
Tmoslav Plesa: Chemical Reaction Systems with a Homoclinic Bifurcation: An Inverse Problem, 25+5 min;
John Ockendon: Wave Homogenisation, 10 min + questions;
Hilary Ockendon: Sloshing, 10 min + questions
Height of rational points on elliptic curves in families
Abstract
Given a family $F$ of elliptic curves defined over $Q$, we are interested in the set $H(Y)$ of curves $E$ in $F$, of positive rank, and for which the minimum of the canonical heights of non-torsion rational points on $E$ is bounded by some parameter $Y$. When one can show that this set is finite, it is natural to investigate statistical properties of arithmetic objects attached to elliptic curves in the set $H(Y)$. We will describe some problems related to this, and will state some results in the case of families of quadratic twists of a fixed elliptic curve.
Modelling sovereign risks: from a hybrid model to the generalized density approach
Abstract
Motivated by the European sovereign debt crisis, we propose a hybrid sovereign default model which combines an accessible part which takes into account the movement of the sovereign solvency and the impact of critical political events, and a totally inaccessible part for the idiosyncratic credit risk. We obtain closed-form formulas for the probability that the default occurs at political critical dates in a Markovian CEV process setting. Moreover, we introduce a generalized density framework for the hybrid default times and deduce the compensator process of default. Finally we apply the hybrid model and the generalized density to the valuation of sovereign bond and explain the significant jumps in the long-term government bond yield during the sovereign crisis.
Customising image analysis using nonlinear partial differential equations
Abstract
When assigned with the task of extracting information from given image data the first challenge one faces is the derivation of a truthful model for both the information and the data. Such a model can be determined by the a-priori knowledge about the image (information), the data and their relation to each other. The source of this knowledge is either our understanding of the type of images we want to reconstruct and of the physics behind the acquisition of the data or we can thrive to learn parametric models from the data itself. The common question arises: how can we customise our model choice to a particular application? Or better how can we make our model adaptive to the given data?
Starting from the first modelling strategy this talk will lead us from nonlinear diffusion equations and subdifferential inclusions of total variation type functionals as the most successful image modeltoday to non-smooth second- and third-order variational models, with data models for Gaussian and Poisson distributed data as well as impulse noise. These models exhibit solution-dependent adaptivities in form of nonlinearities or non-smooth terms in the PDE or the variational problem, respectively. Applications for image denoising, inpainting and surface reconstruction are given. After a critical discussion of these different image and data models we will turn towards the second modelling strategy and propose to combine it with the first one using a PDE constrained optimisation method that customises a parametrised form of the model by learning from examples. In particular, we will consider optimal parameter derivation for total variation denoising with multiple noise distributions and optimising total generalised variation regularisation for its application in photography.
12:00
Obstacle problems of Signorini type, and for non-local operators
Abstract
11:00
16:00
Expanders and Warped Cones
Abstract
I will illustrate how to build families of expanders out of 'very mixing' actions on measure spaces. I will then define the warped cones and show how these metric spaces are strictly related with those expanders.
16:00
Continuity via Logic
Abstract
Point-free topology can often seem like an algebraic almost-topology,
> not quite the same but still interesting to those with an interest in
> it. There is also a tradition of it in computer science, traceable back
> to Scott's topological model of the untyped lambda-calculus, and
> developing through Abramsky's 1987 thesis. There the point-free approach
> can be seen as giving new insights (from a logic of observations),
> albeit in a context where it is equivalent to point-set topology. It was
> in that tradition that I wrote my own book "Topology via Logic".
>
> Absent from my book, however, was a rather deeper connection with logic
> that was already known from topos theory: if one respects certain
> logical constraints (of geometric logic), then the maps one constructs
> are automatically continuous. Given a generic point x of X, if one
> geometrically constructs a point of Y, then one has constructed a
> continuous map from X to Y. This is in fact a point-free result, even
> though it unashamedly uses points.
>
> This "continuity via logic", continuity as geometricity, takes one
> rather further than simple continuity of maps. Sheaves and bundles can
> be understood as continuous set-valued or space-valued maps, and topos
> theory makes this meaningful - with the proviso that, to make it run
> cleanly, all spaces have to be point-free. In the resulting fibrewise
> topology via logic, every geometric construction of spaces (example:
> point-free hyperspaces, or powerlocales) leads automatically to a
> fibrewise construction on bundles.
>
> I shall present an overview of this framework, as well as touching on
> recent work using Joyal's Arithmetic Universes. This bears on the logic
> itself, and aims to replace the geometric logic, with its infinitary
> disjunctions, by a finitary "arithmetic type theory" that still has the
> intrinsic continuity, and is strong enough to encompass significant
> amounts of real analysis.
15:00
Multi Party Computation: Low Communication Protocols
Abstract
In recent years there has been amazing progress in building
practical protocols for Multi-Party Computation (MPC).
So much progress in fact that there are now a number of
companies producing products utilizing this technology. A major issue with existing solutions is the high round
complexity of protocols involving more than two players. In this talk I will survey the main protocols for MPC
and recent ideas in how to obtain practical low round
complexity protocols.
Bieberbach's Theorems
Abstract
Symplectic categories in Derived Geometry
Abstract
I will describe a construction of the Weinstein symplectic category of Lagrangian correspondences in the context of shifted symplectic geometry. I will then explain how one can linearize this category starting from a "quantization" of (-1)-shifted symplectic derived stacks: we assign a perverse sheaf to each (-1)-shifted symplectic derived stack (already done by Joyce and his collaborators) and a map of perverse sheaves to each (-1)-shifted Lagrangian correspondence (still conjectural).
14:30
Excluding Holes
Abstract
A "hole" in a graph is an induced subgraph which is a cycle of length > 3. The perfect graph theorem says that if a graph has no odd holes and no odd antiholes (the complement of a hole), then its chromatic number equals its clique number; but unrestricted graphs can have clique number two and arbitrarily large chromatic number. There is a nice question half-way between them - for which classes of graphs is it true that a bound on clique number implies some (larger) bound on chromatic number? Call this being "chi-bounded".
Gyarfas proposed several conjectures of this form in 1985, and recently there has been significant progress on them. For instance, he conjectured
- graphs with no odd hole are chi-bounded (this is true);
- graphs with no hole of length >100 are chi-bounded (this is true);
- graphs with no odd hole of length >100 are chi-bounded; this is still open but true for triangle-free graphs.
We survey this and several related results. This is joint with Alex Scott and partly with Maria Chudnovsky.
Sparse information representation through feature selection
Abstract
A three-field formulation and mixed FEM for poroelasticity
4th moment of quadratic Dirichlet L-functions in function fields
Abstract
We discuss moments of $L$-functions in function fields, in the hyperelliptic ensemble, focusing on the fourth moment of quadratic Dirichlet $L$-functions at the critical point. We explain how to obtain an asymptotic formula with some of the secondary main terms.
Nonlocal self-improving properties
Abstract
The classical Gehring lemma for elliptic equations with measurable coefficients states that an energy solution, which is initially assumed to be $H^1$ - Sobolev regular, is actually in a better Sobolev space space $W^{1,q}$ for some $q>2$. This a consequence of a self-improving property that so-called reverse Hölder inequality implies. In the case of nonlocal equations a self-improving effect appears: Energy solutions are also more differentiable. This is a new, purely nonlocal phenomenon, which is not present in the local case. The proof relies on a nonlocal version of the Gehring lemma involving new exit time and dyadic decomposition arguments. This is a joint work with G. Mingione and Y. Sire.
15:45
Tight contact structures on connected sums need not be contact connected sums
Abstract
In dimension three, convex surface theory implies that every tight contact structure on a connected sum M # N can be constructed as a connected sum of tight contact structures on M and N. I will explain some examples showing that this is not true in any dimension greater than three. The proof is based on a recent higher-dimensional version of a classic result of Eliashberg about the symplectic fillings of contact manifolds obtained by subcritical surgery. This is joint work with Paolo Ghiggini and Klaus Niederkrüger.
"On the splitting phenomenon in the Sathe-Selberg theorem: universality of the Gamma factor
Abstract
We consider several classes of sequences of random variables whose Laplace transform presents the same type of \textit{splitting phenomenon} when suitably rescaled. Answering a question of Kowalski-Nikeghbali, we explain the apparition of a universal term, the \textit{Gamma factor}, by a common feature of each model, the existence of an auxiliary randomisation that reveals an independence structure.
The class of examples that belong to this framework includes random uniform permutations, random polynomials or random matrices with values in a finite field and the classical Sathe-Selberg theorems in probabilistic number theory. We moreover speculate on potential similarities in the Gaussian setting of the celebrated Keating and Snaith's moments conjecture. (Joint work with R. Chhaibi)
Stein methods for Brownian motion
Abstract
Motivated by a theorem of Barbour, we revisit some of the classical limit theorems in probability from the viewpoint of the Stein method. We setup the framework to bound Wasserstein distances between some distributions on infinite dimensional spaces. We show that the convergence rate for
the Poisson approximation of the Brownian motion is as expected proportional to λ −1/2 where λ is the intensity of the Poisson process. We also exhibit the speed of convergence for the Donsker Theorem and extend this result to enhanced Brownian motion.
Modular Forms from the Arithmetic of Singular Calabi-Yau Manifolds
Abstract
I will give an introductory account of the zeta-functions for one-parameter families of CY manifolds. The aim of the talk is to point out that the zeta-functions corresponding to singular manifolds of the family correspond to modular forms. In order to give this introductory account I will give a lightning review of finite fields and of the p-adic numbers.
16:30
The Travelling Santa Problem and Other Seasonal Challenges
Abstract
Our Christmas Public Lecture this year will be presented by Marcus du Sautoy who will be examining an aspect of Christmas not often considered: the mathematics.
To register please email: @email
The Oxford Mathematics Christmas Lecture is generously sponsored by G-Research - Researching investment ideas to predict financial markets
16:00
On the Tukey structure of ultrafilters
15:00
Technical history of discrete logarithms in small characteristic finite fields
Abstract
Due to its use in cryptographic protocols such as the Diffie--Hellman key exchange, the discrete logarithm problem attracted a considerable amount of attention in the past 40 years. In this talk, we summarize the key technical ideas and their evolution for the case of discrete logarithms in small characteristic finite fields. This road leads from the original belief that this problem was hard enough for cryptographic purpose to the current state of the art where the algorithms are so efficient and practical that the problem can no longer be considered for cryptographic use.
Ada Lovelace Symposium
Abstract
For full details please visit:
http://blogs.bodleian.ox.ac.uk/adalovelace/files/2015/10/Ada-Lovelace-S…
Biaxiality in liquid crystals at low temperatures (Please note Week 9)
Abstract
We study the low-temperature limit in the Landau-de Gennes theory for liquid crystals. We prove that for minimizers for orientable Dirichlet data tend to be almost uniaxial but necessarily contain some biaxiality around the singularities of a limiting harmonic map. In particular we prove that around each defect there must necessarily exist a maximal biaxiality point, a point with a purely uniaxial configuration with a positive order parameter, and a point with a purely uniaxial configuration with a negative order parameter. Estimates for the size of the biaxial cores are also given.
This is joint work with Apala Majumdar and Adriano Pisante.
14:15
The effect of lateral stresses on the flow of ice shelves and their role in stabilizing marine ice sheets
Abstract
It has been conjectured that marine ice sheets (those that
flow into the ocean) are unconditionally unstable when the underlying
bed-slope runs uphill in the direction of flow, as is typical in many
regions underneath the West Antarctic Ice Sheet. This conjecture is
supported by theoretical studies that assume a two-dimensional flow
idealization. However, if the floating section (the ice shelf) is
subject to three-dimensional stresses from the edges of the embayments
into which they flow, as is typical of many ice shelves in Antarctica,
then the ice shelf creates a buttress that supports the ice sheet.
This allows the ice sheet to remain stable under conditions that may
otherwise result in collapse of the ice sheet. This talk presents new
theoretical and experimental results relating to the effects of
three-dimensional stresses on the flow and structure of ice shelves,
and their potential to stabilize marine ice sheets.
Transmural propagation of the action potential in mammalian hearts: marrying experimental and theoretical studies
Abstract
Transmural propagation is a little studied feature of mammalian electrophysiology, this talk reviews our experimental work using different optical techniques to characterise this mode
of conduction under physiological and pathophysiological conditions.
Killed Brownian motion with a prescribed lifetime distribution and models of default
Abstract
In finance, the default time of a counterparty is sometimes modeled as the
first passage time of a credit index process below a barrier. It is
therefore relevant to consider the following question:
If we know the distribution of the default time, can we find a unique
barrier which gives this distribution? This is known as the Inverse
First Passage Time (IFPT) problem in the literature.
We consider a more general `smoothed' version of the inverse first
passage time problem in which the first passage time is replaced by
the first instant that the time spent below the barrier exceeds an
independent exponential random variable. We show that any smooth
distribution results from some unique continuously differentiable
barrier. In current work with B. Ettinger and T. K. Wong, we use PDE
methods to show the uniqueness and existence of solutions to a
discontinuous version of the IFPT problem.
Analysis of images in multidimensional single molecule microscopy
Abstract
Multidimensional single molecule microscopy (MSMM) generates image time series of biomolecules in a cellular environment that have been tagged with fluorescent labels. Initial analysis steps of such images consist of image registration of multiple channels, feature detection and single particle tracking. Further analysis may involve the estimation of diffusion rates, the measurement of separations between molecules that are not optically resolved and more. The analysis is done under the condition of poor signal to noise ratios, high density of features and other adverse conditions. Pushing the boundary of what is measurable, we are facing among others the following challenges. Firstly the correct assessment of the uncertainties and the significance of the results, secondly the fast and reliable identification of those features and tracks that fulfil the assumptions of the models used. Simpler models require more rigid preconditions and therefore limiting the usable data, complexer models are theoretically and especially computationally challenging.
17:30
Near-henselian fields - valuation theory in the language of rings
Abstract
Abstract: (Joint work with Sylvy Anscombe) We consider four properties
of a field K related to the existence of (definable) henselian
valuations on K and on elementarily equivalent fields and study the
implications between them. Surprisingly, the full pictures look very
different in equicharacteristic and mixed characteristic.
A Theorem by Thom
Abstract
In 1954 Thom showed that there is an isomorphism between the cobordism groups of manifolds and the homotopy groups of the Thom spectrum. I will define what these words mean and present the explicit, geometric construction of the isomorphism.
Predictable Forward Performance Processes (joint work with B. Angoshtari and X.Y. Zhou)
Abstract
In this talk, I will present a family of forward performance processes in
discrete time. These processes are predictable with regards to the market
information. Examples from a binomial setting will be given which include
the time-monotone exponential forward process and the completely monotonic
family.
Galois theory of periods and applications
Abstract
A period is a certain type of number obtained by integrating algebraic differential forms over algebraic domains. Examples include pi, algebraic numbers, values of the Riemann zeta function at integers, and other classical constants.
Difficult transcendence conjectures due to Grothendieck suggest that there should be a Galois theory of periods.
I will explain these notions in very introductory terms and show how to set up such a Galois theory in certain situations.
I will then discuss some applications, in particular to Kim's method for bounding $S$-integral solutions to the equation $u+v=1$, and possibly to high-energy physics.
Sharp interface limit in a phase field model of cell motility
Abstract
We study the motion of a eukaryotic cell on a substrate and investigate the dependence of this motion on key physical parameters such as strength of protrusion by actin filaments and adhesion. This motion is modeled by a system of two PDEs consisting of the Allen-Cahn equation for the scalar phase field function coupled with a vectorial parabolic equation for the orientation of the actin filament network. The two key properties of this system are (i) presence of gradients in the coupling terms and (ii) mass (volume) preservation constraints. We pass to the sharp interface limit to derive the equation of the motion of the cell boundary, which is mean curvature motion perturbed by a novel nonlinear term. We establish the existence of two distinct regimes of the physical parameters. In the subcritical regime, the well-posedness of the problem is proved (M. Mizuhara et al., 2015). Our main focus is the supercritical regime where we established surprising features of the motion of the interface such as discontinuities of velocities and hysteresis in the 1D model, and instability of the circular shape and rise of asymmetry in the 2D model. Because of properties (i)-(ii), classical comparison principle techniques do not apply to this system. Furthermore, the system can not be written in a form of gradient flow, which is why Γ-convergence techniques also can not be used. This is joint work with V. Rybalko and M. Potomkin.
Fast computation of the semiclassical Schrödinger equation
Abstract
Equations of quantum mechanics in the semiclassical regime present an enduring challenge for numerical analysts, because their solution is highly oscillatory and evolves on two scales. Standard computational approaches to the semiclassical Schrödinger equation do not allow for long time integration as required, for example, in quantum control of atoms by short laser bursts. This has motivated our approach of asymptotic splittings. Combining techniques from Lie-algebra theory and numerical algebra, we present a new computational paradigm of symmetric Zassenhaus splittings, which lends itself to a very precise discretisation in long time intervals, at very little cost. We will illustrate our talk by examples of quantum phenomena – quantum tunnelling and quantum scattering – and their computation and, time allowing, discuss an extension of this methodology to time-dependent semiclassical systems using Magnus expansions
Weak solutions to the Navier-Stokes initial boundary value problem in exterior domains with initial data in L(3,∞)
Abstract
We consider the Navier-Stokes initial boundary value problem (NS-IBVP) in a smooth exterior domain. We are interested in establishing existence of weak solutions (we mean weak solutions as synonym of solutions global in time) with an initial data in L(3,∞)
11:00
'On the model theory of representations of rings of integers'
Abstract
following the joint paper with L.Shaheen http://people.maths.ox.ac.uk/zilber/wLb.pdf
16:00
Quasihomomorphisms with non-commutative target
Abstract
Quasihomomorphisms (QHMs) are maps $f$ between groups such that the
homomorphic condition is boundedly satisfied. The case of QHMs with
abelian target is well studied and is useful for computing the second
bounded cohomology of groups. The case of target non-abelian has,
however, not been studied a lot.
We will see a technique for classifying QHMs $f: G \rightarrow H$ by Fujiwara and
Kapovich. We will give examples (sometimes with proofs!) for QHM in
various cases such as
- the image $H$ hyperbolic groups,
- the image $H$ discrete rank one isometries,
- the preimage $G$ cyclic / free group, etc.
Furthermore, we point out a relation between QHM and extensions by short
exact sequences.
Global well-posedness of the energy critical Maxwell-Klein-Gordon equation
Abstract
The massless Maxwell-Klein-Gordon system describes the interaction between an electromagnetic field (Maxwell) and a charged massless scalar field (massless Klein-Gordon, or wave). In this talk, I will present a recent proof, joint with D. Tataru, of global well-posedness and scattering of this system for arbitrary finite energy data in the (4+1)-dimensional Minkowski space, in which the PDE is energy critical.
16:00
Countable dynamics
Abstract
We know that the existence of a period three point for an interval map implies much about the dynamics of the map, but the restriction of the map to the periodic orbit itself is trivial. Countable invariant subsets arise naturally in many dynamical systems, for example as $\omega$-limit sets, but many of the usual notions of dynamics degenerate when restricted to countable sets. In this talk we look at what we can say about dynamics on countable compact spaces. In particular, the theory of countable dynamical systems is the theory of the induced dynamics on countable invariant subsets of the interval and the theory of homeomorphic countable dynamics is the theory of compact countable invariant subsets of homeomorphisms of the plane.
Joint work with Columba Perez