Thu, 22 Nov 2018

16:00 - 17:00
L6

The eigencurve at Eisenstein weight one points

Alice Pozzi
(UCL)
Abstract

In 1973, Serre observed that the Hecke eigenvalues of Eisenstein series can be p-adically interpolated. In other words, Eisenstein series can be viewed as specializations of a p-adic family parametrized by the weight. The notion of p-adic variations of modular forms was later generalized by Hida to include families of ordinary cuspforms. In 1998, Coleman and Mazur defined the eigencurve, a rigid analytic space classifying much more general p-adic families of Hecke eigenforms parametrized by the weight. The local nature of the eigencurve is well-understood at points corresponding to cuspforms of weight k ≥ 2, while the weight one case is far more intricate.

In this talk, we discuss the geometry of the eigencurve at weight one Eisenstein points. Our approach consists in studying the deformation rings of certain (deceptively simple!) Artin representations. Via this Galois-theoretic method, we obtain the q-expansion of some non-classical overconvergent forms in terms of p-adic logarithms of p-units in certain number field. Finally, we will explain how these calculations suggest a different approach to the Gross-Stark conjecture.

Thu, 22 Nov 2018
16:00
C5

TBA

Nicholas Wilkins
(Oxford University)
Thu, 22 Nov 2018

16:00 - 17:30
L3

Variational models and partial differential equations for mathematical imaging

Carola Schönlieb
(University of Cambridge)
Abstract

Images are a rich source of beautiful mathematical formalism and analysis. Associated mathematical problems arise in functional and non-smooth analysis, the theory and numerical analysis of partial differential equations, harmonic, stochastic and statistical analysis, and optimisation. Starting with a discussion on the intrinsic structure of images and their mathematical representation, in this talk we will learn about variational models for image analysis and their connection to partial differential equations, and go all the way to the challenges of their mathematical analysis as well as the hurdles for solving these - typically non-smooth - models computationally. The talk is furnished with applications of the introduced models to image de-noising, motion estimation and segmentation, as well as their use in biomedical image reconstruction such as it appears in magnetic resonance imaging.

Thu, 22 Nov 2018

14:00 - 15:00
L4

Some new finding for preconditioning of elliptic problems

Prof Kent-Andre Mardal
(University of Oslo)
Abstract


In this talk I will present two recent findings concerning the preconditioning of elliptic problems. The first result concerns preconditioning of elliptic problems with variable coefficient K by an inverse Laplacian. Here we show that there is a close relationship between the eigenvalues of the preconditioned system and K. 
The second results concern the problem on mixed form where K approaches zero. Here, we show a uniform inf-sup condition and corresponding robust preconditioning. 

Thu, 22 Nov 2018

12:00 - 13:00

Probability Session

Andrew Allan
(University of Oxford)
Abstract

An informal session for DPhil students, ECRs and undergraduates with an interest in probability. The aim is to gain exposure to areas outside of your own research interests in an informal and accessible way.

Wed, 21 Nov 2018
16:00
C1

Haken's algorithm for recognising the unknot

Mehdi Yazdi
(Oxford University)
Abstract


I will discuss the basics of normal surface theory, and how they were used to give an algorithm for deciding whether a given diagram represents the unknot. This version is primarily based on Haken's work, with simplifications from Schubert and Jaco-Oertel.
 

Wed, 21 Nov 2018
11:00
N3.12

The Monoidal Marriage of Stucture and Physics

Nicola Pinzani
(University of Oxford)
Abstract

What does abstract nonsense (category theory) have to do with the apparently opposite proverbial concreteness of physics? In this talk I will try to convey the importance of understanding physical theories from a compositional and structural perspective, where the fundamental logic of interaction between systems becomes the real protagonist. Firstly, we will see how different classes of symmetric monoidal categories can be used to model physical processes in a very natural and intuitive way. We will then explore the claim that category theory is not only useful in providing a unified framework, but it can be also used to perfect and modify preexistent models. In this direction, I will show how the introduction of a trace in the symmetric monoidal category describing QIT can be used to talk about quantum interactions induced by cyclic causal relationships.

Tue, 20 Nov 2018
16:00
L5

Definably simple groups in valued fields

Dugald Macpherson
(Leeds)
Abstract

I will discuss joint work with Gismatullin, Halupczok, and Simonetta on the following problem: given a henselian valued field of characteristic 0, possibly equipped with analytic structure (in the sense stemming originally from Denef and van den Dries), describe the possibilities for a definable group G in the valued field sort which is definably almost simple, that is, has no proper infinite definable normal subgroups. We also have results for an algebraically closed valued field K in characteristic p, but assuming also that the group is a definable subgroup of GL(n, K).

Tue, 20 Nov 2018

15:45 - 16:45
L4

A Steenrod-square-type operation for quantum cohomology and Floer theory

Nicholas Wilkins
(Oxford)
Abstract

The (total) Steenrod square is a ring homomorphism from the cohomology of a topological space to the Z/2-equivariant cohomology of this space, with the trivial Z/2-action. Given a closed monotone symplectic manifold, one can define a deformed notion of the Steenrod square for quantum cohomology, which will not in general be a ring homomorphism, and prove some properties of this operation that are analogous to properties of the classical Steenrod square. We will then link this, in a more general setting, to a definition by Seidel of a similar operation on Floer cohomology.
 

Tue, 20 Nov 2018

14:30 - 15:00

Mixed methods for stress-assisted diffusion problems

Ricardo Ruiz Baier
(Oxford)
Abstract

In this talk I will introduce a new mathematical model for the computational modelling of the active contraction of cardiac tissue using stress-assisted conductivity as the main mechanism for mechanoelectrical feedback. The coupling variable is the Kirchhoff stress and so the equations of hyperelasticity are written in mixed form and a suitable finite element formulation is proposed. Next I will introduce a simplified version of the coupled system, focusing on its analysis in terms of solvability and stability of continuous and discrete mixed-primal formulations, and the convergence of these methods will be illustrated through two numerical tests.

Tue, 20 Nov 2018
14:30
L6

On the rational Turán exponents conjecture

Dongyeap Kang
(KAIST)
Abstract

The extremal number ${\rm ex}(n,F)$ of a graph $F$ is the maximum number of edges in an $n$-vertex graph not containing $F$ as a subgraph. A real number $r \in [0,2]$ is realisable if there exists a graph $F$ with ${\rm ex}(n , F) = \Theta(n^r)$. Several decades ago, Erdős and Simonovits conjectured that every rational number in $[1,2]$ is realisable. Despite decades of effort, the only known realisable numbers are $0,1, \frac{7}{5}, 2$, and the numbers of the form $1+\frac{1}{m}$, $2-\frac{1}{m}$, $2-\frac{2}{m}$ for integers $m \geq 1$. In particular, it is not even known whether the set of all realisable numbers contains a single limit point other than two numbers $1$ and $2$.

We discuss some progress on the conjecture of Erdős and Simonovits. First, we show that $2 - \frac{a}{b}$ is realisable for any integers $a,b \geq 1$ with $b>a$ and $b \equiv \pm 1 ~({\rm mod}\:a)$. This includes all previously known ones, and gives infinitely many limit points $2-\frac{1}{m}$ in the set of all realisable numbers as a consequence. Secondly, we propose a conjecture on subdivisions of bipartite graphs. Apart from being interesting on its own, we show that, somewhat surprisingly, this subdivision conjecture in fact implies that every rational number between 1 and 2 is realisable.

This is joint work with Jaehoon Kim and Hong Liu.

Tue, 20 Nov 2018
14:15
L4

A Beilinson-Bernstein Theorem for p-adic analytic quantum groups

Nicolas Dupre
(Cambridge)
Abstract

The celebrated localisation theorem of Beilinson-Bernstein asserts that there is an equivalence between representations of a Lie algebra and modules over the sheaf of differential operators on the corresponding flag variety. In this talk we discuss certain analogues of this result in various contexts. Namely, there is a localisation theorem for quantum groups due to Backelin and Kremnizer and, more recently, Ardakov and Wadsley also proved a localisation theorem working with certain completed enveloping algebras of p-adic Lie algebras. We then explain how to combine the ideas involved in these results to construct
a p-adic analytic quantum flag variety and a category of D-modules on it, and we show that the global section functor on these D-modules yields an equivalence of categories.

Tue, 20 Nov 2018

14:00 - 14:30
L5

A block preconditioner for non-isothermal flow in porous media

Thomas Roy
(Oxford)
Abstract


In petroleum reservoir simulation, the standard preconditioner is a two-stage process which involves solving a restricted pressure system with AMG. Initially designed for isothermal models, this approach is often used in the thermal case. However, it does not incorporate heat diffusion or the effects of temperature changes on fluid flow through viscosity and density. We seek to develop preconditioners which consider this cross-coupling between pressure and temperature. In order to study the effects of both pressure and temperature on fluid and heat flow, we first consider a model of non-isothermal single phase flow through porous media. For this model, we develop a block preconditioner with an efficient Schur complement approximation. Then, we extend this method for multiphase flow as a two-stage preconditioner.

Tue, 20 Nov 2018

12:00 - 13:15
L4

A PDE construction of the Euclidean $\Phi^4_3$ quantum field theory

Martina Hofmanova
(Bielefeld and visiting Newton Institute)
Abstract

We present a self-contained construction of the Euclidean $\Phi^4$ quantum
field theory on $\mathbb{R}^3$ based on PDE arguments. More precisely, we
consider an approximation of the stochastic quantization equation on
$\mathbb{R}^3$ defined on a periodic lattice of mesh size $\varepsilon$ and
side length $M$. We introduce an energy method and prove tightness of the
corresponding Gibbs measures as $\varepsilon \rightarrow 0$, $M \rightarrow
\infty$. We show that every limit point satisfies reflection positivity,
translation invariance and nontriviality (i.e. non-Gaussianity). Our
argument applies to arbitrary positive coupling constant and also to
multicomponent models with $O(N)$ symmetry. Joint work with Massimiliano
Gubinelli.

Tue, 20 Nov 2018
12:00
C4

Epidemic processes in multilayer networks

Francisco Aparecido Rodrigues
(University of São Paulo)
Abstract

Disease transmission and rumour spreading are ubiquitous in social and technological networks. In this talk, we will present our last results on the modelling of rumour and disease spreading in multilayer networks.  We will derive analytical expressions for the epidemic threshold of the susceptible-infected-susceptible (SIS) and susceptible-infected-recovered dynamics, as well as upper and lower bounds for the disease prevalence in the steady state for the SIS scenario. Using the quasistationary state method, we numerically show the existence of disease localization and the emergence of two or more susceptibility peaks in a multiplex network. Moreover, we will introduce a model of epidemic spreading with awareness, where the disease and information are propagated in different layers with different time scales. We will show that the time scale determines whether the information awareness is beneficial or not to the disease spreading. 

Mon, 19 Nov 2018

17:00 - 18:00
L4

Higher Regularity of the p-Poisson Equation in the Plane

Lars Diening
(Bielefeld University)
Abstract

In recent years it has been discovered that also non-linear, degenerate equations like the $p$-Poisson equation $$ -\mathrm{div}(A(\nabla u))= - \mathrm{div} (|\nabla u|^{{p-2}}\nabla u)= -{\rm div} F$$ allow for optimal regularity. This equation has similarities to the one of power-law fluids. In particular, the non-linear mapping $F \mapsto A(\nabla u)$ satisfies surprisingly the linear, optimal estimate $\|A(\nabla u)\|_X \le c\, \|F\|_X$ for several choices of spaces $X$. In particular, this estimate holds for Lebesgue spaces $L^q$ (with $q \geq p'$), spaces of bounded mean oscillations and Holder spaces$C^{0,\alpha}$ (for some $\alpha>0$).

In this talk we show that we can extend this theory to Sobolev and Besov spaces of (almost) one derivative. Our result are restricted to the case of the plane, since we use complex analysis in our proof. Moreover, we are restricted to the super-linear case $p \geq 2$, since the result fails $p < 2$. Joint work with Anna Kh. Balci, Markus Weimar.

Mon, 19 Nov 2018

16:00 - 17:00
L4

Stationary black holes with negative cosmological constant

Piotr T. Chrusciel
(University of Vienna)
Abstract

I will present a construction of large families of singularity-free stationary solutions of Einstein equations, for a large class of matter models including vacuum, with a negative cosmological constant. The solutions, which are of course real-valued Lorentzian metrics, are determined by a set of free data at conformal infinity, and the construction proceeds through elliptic equations for complex-valued tensor fields. One thus obtains infinite dimensional families of both strictly stationary spacetimes and black hole spacetimes.

Mon, 19 Nov 2018
15:45
L6

Random triangular Burnside groups

John Mackay
(University of Bristol)
Abstract

In this talk I will discuss recent joint work with Dominik Gruber where 
we find a reasonable model for random (infinite) Burnside groups, 
building on earlier tools developed by Coulon and Coulon-Gruber.

The free Burnside group with rank r and exponent n is defined to be the 
quotient of a free group of rank r by the normal subgroup generated by 
all elements of the form g^n; quotients of such groups are called 
Burnside groups.  In 1902, Burnside asked whether any such groups could 
be infinite, but it wasn't until the 1960s that Novikov and Adian showed 
that indeed this was the case for all large enough odd n, with later 
important developments by Ol'shanski, Ivanov, Lysenok and others.

In a different direction, when Gromov developed the theory of hyperbolic 
groups in the 1980s and 90s, he observed that random quotients of free 
groups have interesting properties: depending on exactly how one chooses 
the number and length of relations one can typically gets hyperbolic 
groups, and these groups are infinite as long as not too many relations 
are chosen, and exhibit other interesting behaviour.  But one could 
equally well consider what happens if one takes random quotients of 
other free objects, such as free Burnside groups, and that is what we 
will discuss.
 

Mon, 19 Nov 2018

15:45 - 16:45
L3

Fast-slow systems driven by slowly mixing deterministic dynamics.

ALEXEY KOREPANOV
(University of Warwick)
Abstract

I will talk about R^n valued random processes driven by a "noise", which is generated by a deterministic dynamical system, randomness coming from the choice of the initial condition.

Such processes were considered by D.Kelly and I.Melbourne.I will present our joint work with I.Chevyrev, P.Friz, I.Melbourne and H.Zhang, where we consider the noise with long term memory. We prove convergence to solution of a stochastic differential equation which is, depending on the noise, driven by either a Brownian motion (optimizing the assumptions of Kelly-Melbourne) or a Lévy process.Our work is made possible by recent progress in rough path theory for càdlàg paths in p-variation topology.

 

Mon, 19 Nov 2018

14:15 - 15:15
L4

Zed-hat

Sergei Gukov
(Caltech)
Abstract

The goal of the talk will be to introduce a class of functions that answer a question in topology, can be computed via analytic methods more common in the theory of dynamical systems, and in the end turn out to enjoy beautiful modular properties of the type first observed by Ramanujan. If time permits, we will discuss connections with vertex algebras and physics of BPS states which play an important role, but will be hidden "under the hood" in much of the talk.

 

Mon, 19 Nov 2018

14:15 - 15:15
L3

Hedging derivatives under market frictions using deep learning techniques

LUKAS GONON
((ETH) Zurich)
Abstract

We consider the problem of optimally hedging a portfolio of derivatives in a scenario based discrete-time market with transaction costs. Risk-preferences are specified in terms of a convex risk-measure. Such a framework has suffered from numerical intractability up until recently, but this has changed thanks to technological advances: using hedging strategies built from neural networks and machine learning optimization techniques, optimal hedging strategies can be approximated efficiently, as shown by the numerical study and some theoretical results presented in this talk (based on joint work with Hans Bühler, Ben Wood and Josef Teichmann).