Tue, 31 Oct 2017
14:15
L4

Multiplicity-free primitive ideals and W-algebras

Alexander Premet
(University of Manchester)
Abstract

In my talk I will explain how to relate 1-dimensional representations of finite W-algebras with multiplicity free primitive ideals of universal enveloping algebras and representations of minimal dimension of the corresponding reduced enveloping algebras (Humphreys' conjecture). I will also mention some open problems in the field.

Tue, 31 Oct 2017

14:00 - 14:30
L5

Dual Acceleration for Nonconvex Optimisation

Matthew Geleta
(University of Cambridge)
Abstract


The phenomenon of poor algorithmic scalability is a critical problem in large-scale machine learning and data science. This has led to a resurgence in the use of first-order (Hessian-free) algorithms from classical optimisation. One major drawback is that first-order methods tend to converge extremely slowly. However, there exist techniques for efficiently accelerating them.
    
The topic of this talk is the Dual Regularisation Nonlinear Acceleration algorithm (DRNA) (Geleta, 2017) for nonconvex optimisation. Numerical studies using the CUTEst optimisation problem set show the method to accelerate several nonconvex optimisation algorithms, including quasi-Newton BFGS and steepest descent methods. DRNA compares favourably with a number of existing accelerators in these studies.
    
DRNA extends to the nonconvex setting a recent acceleration algorithm due to Scieur et al. (Advances in Neural Information Processing Systems 29, 2016). We have proven theorems relating DRNA to the Kylov subspace method GMRES, as well as to Anderson's acceleration method and family of multi-secant quasi-Newton methods.
 

Tue, 31 Oct 2017

12:00 - 13:15
L4

Superradiance by charged black holes, a numerical exploration

Jean-Philippe Nicolas
(Université de Brest)
Abstract

Superradiance in black hole spacetimes is a phenomenon by which a field of spin 0 or 1 can extract energy from the background. Typically, one can imagine sending a wave packet with a given energy towards a black hole and receiving in return a superposition of wave packets carrying a total amount of energy that is larger than the energy sent in. It can be caused by rotation or by interaction between the charges of the black hole and the field. In the first case, the region where superradiance takes place (the ergoregion) has a clear geometrical localization depending only on the physical parameters of the black hole. For charge induced superradiance, this is not the case and we have a generalized ergoregion depending also on the physical properties of the field (mass, charge, angular momentum). In the most severe cases, the generalized ergoregion may cover the whole exterior of the black hole. We focus on charge-induced superradiance for spin 0 fields in spherically symmetric situations. Alain Bachelot wrote a thorough theoretical study of this question in 2004, which, to my knowledge, is the only work of its kind. When I was in Bordeaux, he and I discussed the possibility of investigating superradiance numerically. Over the years it became an actual research project, involving Laurent Di Menza and more recently Mathieu Pellen, of which this talk is an account. The idea was to observe numerically some superradiant behaviours and gain a more precise understanding of the phenomenon. We shall show an exact analogue of the Penrose process with the superradiance of wave packets and a slightly different behaviour for fields "emerging" inside the ergoregion. We shall also explore the related question of black hole bombs and present some recent observations. 

Mon, 30 Oct 2017

16:00 - 17:00
L4

Effects of small boundary perturbation on the porous medium flow

Igor Pazanin
(University of Zagreb)
Abstract

It is well-known that only a limited number of the fluid flow problems can be solved (or approximated) by the solutions in the explicit form. To derive such solutions, we usually need to start with (over)simplified mathematical models and consider ideal geometries on the flow domains with no distortions introduced. However, in practice, the boundary of the fluid domain can contain various small irregularities (rugosities, dents, etc.) being far from the ideal one. Such problems are challenging from the mathematical point of view and, in most cases, can be treated only numerically. The analytical treatments are rare because introducing the small parameter as the perturbation quantity in the domain boundary forces us to perform tedious change of variables. Having this in mind, our goal is to present recent analytical results on the effects of a slightly perturbed boundary on the fluid flow through a channel filled with a porous medium. We start from a rectangular domain and then perturb the upper part of its boundary by the product of the small parameter $\varepsilon$ and arbitrary smooth function. The porous medium flow is described by the Darcy-Brinkman model which can handle the presence of a boundary on which the no-slip condition for the velocity is imposed. Using asymptotic analysis with respect to $\varepsilon$, we formally derive the effective model in the form of the explicit formulae for the velocity and pressure. The obtained asymptotic approximation clearly shows the nonlocal effects of the small boundary perturbation. The error analysis is also conducted providing the order of accuracy of the asymptotic solution. We will also address the problem of the solute transport through a semi-infinite channel filled with a fluid saturated sparsely packed porous medium. A small perturbation of magnitude $\varepsilon$ is applied on the channel's walls on which the solute particles undergo a first-order chemical reaction. The effective model for solute concentration in the small-Péclet-number-regime is derived using asymptotic analysis with respect to $\varepsilon$. The obtained mathematical model clearly indicates the influence of the porous medium, chemical reaction and boundary distortion on the effective flow.

This is a joint work with Eduard Marušić-Paloka (University of Zagreb).

Mon, 30 Oct 2017
15:45
L6

A new anomaly in 2d chiral conformal field theory

Andre Henriques
(Oxford)
Abstract

Fix a loop group LG, a level k∈ℕ, and let Repᵏ(LG) be corresponding category of positive energy representations.
For any pair of pants Σ (with complex structure in the interior and parametrized boundary), there is an associated functor Repᵏ(LG) × Repᵏ(LG) → Repᵏ(LG): (H,K) ↦ H⊠K, called the fusion product.

It had been widely expected (but never proven) that this operation should be unitary. Namely, that the choice of LG-invariant inner products on H and on K should induce an LG-invariant inner product on H⊠K. We show that this is not the case: there is an anomaly.
More precisely, there is an ℝ₊-torsor canonically associated to Σ. It is only after trivialising of this ℝ₊-torsor that the fusion product acquires an LG-invariant inner product. (The same statement applies when Σ is an arbitrary Riemann surface with boundary.)
Joint work with James Tener.

Mon, 30 Oct 2017

15:45 - 16:45
L3

Statistics and Rough Paths

ANASTASIA PAPAVASILEIOU
(University of Warwick)
Abstract

Having made sense of differential equations driven by rough paths, we now have a new set of models available but when it comes to calibrating them to data, the tools are still underdeveloped. I will present some results and discuss some challenges related to building these tools.

Mon, 30 Oct 2017
14:30
L6

Rainbow Matchings in Properly Edge-Coloured Multigraphs

Liana Yepremyan
(Oxford University)
Abstract

Aharoni and Berger conjectured that in any bipartite multigraph that is properly edge-coloured by n colours with at least n+1 edges of each colour there must be a matching that uses each colour exactly once (such a matching is called rainbow). This conjecture recently have been proved asymptotically by Pokrovskiy. In this talk, I will consider the same question without the bipartiteness assumption. It turns out that in any multigraph with bounded edge multiplicities, that is properly edge-coloured by n colours with at least n+o(n) edges of each colour, there must be a matching of size n-O(1) that uses each colour at most once. This is joint work with Peter Keevash.

Mon, 30 Oct 2017

14:15 - 14:45
L3

Loewner equation driven by complex-valued driving functions

HUY TRAN
(UCLA/TU Berlin)
Abstract

Consider the Loewner equation associated to the upper-half plane. This is an equation originated from an extremal problem in complex analysis. Nowadays, it attracts a lot of attention due to its connection to probability. Normally this equation is driven by a real-valued function. In this talk, we will show that the equation still makes sense when being driven by a complex-valued function. We will relate this situation to the classical situation and also to complex dynamics. 

Mon, 30 Oct 2017

14:15 - 15:15
L5

Almost Kähler 4-manifolds of Constant Holomorphic Sectional Curvature are Kähler

Markus Upmeier
(Oxford)
Abstract

We show that a closed almost Kähler 4-manifold of globally constant holomorphic sectional curvature k<=0 with respect to the canonical Hermitian connection is automatically Kähler. The same result holds for k < 0 if we require in addition that the Ricci curvature is J-invariant. The proofs are based on the observation that such manifolds are self-dual, so that Chern–Weil theory implies useful integral formulas, which are then combined with results from Seiberg–Witten theory.

Mon, 30 Oct 2017
12:45
L3

Generalized Seiberg-Witten equations and almost-Hermitian geometry

Varun Thakre
(ICTS Bengaluru)
Abstract

I will talk about a generalisation of the Seiberg-Witten equations introduced by Taubes and Pidstrygach, in dimension 3 and 4 respectively, where the spinor representation is replaced by a hyperKahler manifold admitting certain symmetries. I will discuss the 4-dimensional equations and their relation with the almost-Kahler geometry of the underlying 4-manifold. In particular, I will show that the equations can be interpreted in terms of a PDE for an almost-complex structure on 4-manifold. This generalises a result of Donaldson. 

 
Fri, 27 Oct 2017

17:00 - 18:00
L1

Stephen Hawking - Inaugural Roger Penrose Lecture SOLD OUT, WAITING LIST FULL

Stephen Hawking
(University of Cambridge)
Abstract

In recognition of a lifetime's contribution across the mathematical sciences, we are initiating a series of annual Public Lectures in honour of Roger Penrose. The first lecture will be given by his long-time collaborator and friend Stephen Hawking.

Unfortunately the lecture is now sold out and we have a full waiting list. However, we will be podcasting the lecture live (and also via the University of Oxford Facebook page).

Fri, 27 Oct 2017

11:45 - 13:15
L3

InFoMM CDT Group Meeting

Niall Bootland, Roxana Pamfil, Lindon Roberts, Victoria Pereira
(Mathematical Institute)
Fri, 27 Oct 2017

10:00 - 11:00
L3

Challenges in the optimisation of warehouse efficiency

Padraig Regan
(StayLinked)
Abstract

In certain business environments, it is essential to the success of the business that workers stick closely to their plans and are not distracted, diverted or stopped. A warehouse is a great example of this for businesses where customers order goods online and the merchants commit to delivery dates.  In a warehouse, somewhere, a team of workers are scheduled to pick the items which will make up those orders and get them shipped on time.  If the workers do not deliver to plan, then orders will not be shipped on time, reputations will be damaged, customer will be lost and companies will go out of business.

StayLinked builds software which measures what these warehouse workers do and measures the factors which cause them to be distracted, diverted or stopped.  We measure whenever they start or end a task or process (e.g. start an order, pick an item in an order, complete an order). Some of the influencing factors we measure include the way the worker interacts with the device (using keyboard, scanner, gesture), navigates through the application (screens 1-3-4-2 instead of 1-2-3-4), the performance of the battery (dead battery stops work), the performance of the network (connected to access point or not, high or low latency), the device types being used, device form factor, physical location (warehouse 1, warehouse 2), profile of worker, etc.

We are seeking to build a configurable real-time mathematical model which will allow us to take all these factors into account and confidently demonstrate a measure of their impact (positive or negative) on the business process and therefore on the worker’s productivity. We also want to alert operational staff as soon as we can identify that important events have happened.  These alerts can then be quickly acted upon and problems resolved at the earliest possible opportunity.

In this project, we would like to collaborate with the maths faculty to understand the appropriate mathematical techniques and tools to use to build this functionality.  This product is being used right now by our customers so it would also be a great opportunity for a student to quickly see the results of their work in action in a real-world environment.

Thu, 26 Oct 2017
16:00
C5

Quiver varieties revisited

Filip Zivanovic
(Oxford University)
Abstract

Quiver varieties are an attractive research topic of many branches of contemporary mathematics - (geometric) representation theory, (hyper)Kähler differential geometry, (symplectic) algebraic geometry and quantum algebra.

In the talk, I will define different types of quiver varieties, along with some interesting examples. Afterwards, I will focus on Nakajima quiver varieties (hyperkähler moduli spaces obtained from framed-double-quiver representations), stating main results on their topology and geometry. If the time permits, I will say a bit about the symplectic topology of them.

Thu, 26 Oct 2017

16:00 - 17:00
L6

Joint Logic/ Number Theory Seminar: Virtual rigid motives of semi-algebraic sets in valued fields

Arthur Forey
(Institut de mathématiques de Jussieu)
Abstract

Let k be a field of characteristic zero and K=k((t)). Semi-algebraic sets over K are boolean combinations of algebraic sets and sets defined by valuative inequalities. The associated Grothendieck ring has been studied by Hrushovski and Kazhdan who link it via motivic integration to the Grothendieck ring of varieties over k. I will present a morphism from the former to the Grothendieck ring of motives of rigid analytic varieties over K in the sense of Ayoub. This allows to refine the comparison by Ayoub, Ivorra and Sebag between motivic Milnor fibre and motivic nearby cycle functor.
 

Thu, 26 Oct 2017
16:00
L6

Joint Number Theory / Logic Seminar: Virtual rigid motives of semi-algebraic sets in valued fields

Arthur Forey
(Institut de mathématiques de Jussieu)
Abstract

Let k be a field of characteristic zero and K=k((t)). Semi-algebraic sets over K are boolean combinations of algebraic sets and sets defined by valuative inequalities. The associated Grothendieck ring has been studied by Hrushovski and Kazhdan who link it via motivic integration to the Grothendieck ring of varieties over k. I will present a morphism from the former to the Grothendieck ring of motives of rigid analytic varieties over K in the sense of Ayoub. This allows to refine the comparison by Ayoub, Ivorra and Sebag between motivic Milnor fibre and motivic nearby cycle functor.
 

Thu, 26 Oct 2017

16:00 - 17:30
L3

Brain morphology in foetal life

Martine Ben Amar
(Laboratoire de Physique Statistique)
Abstract

Brain convolutions are specificity of mammals. Varying in intensity according to the animal species, it is measured by an index called the gyrification index, ratio between the effective surface of the cortex compared to its apparent surface. Its value is closed to 1 for rodents (smooth brain), 2.6 for new-borns and 5 for dolphins.  For humans, any significant deviation is a signature of a pathology occurring in fetal life, which can be detected now by magnetic resonance imaging (MRI). We propose a simple model of growth for a bilayer made of the grey and white matter, the grey matter being in cortical position. We analytically solved the Neo-Hookean approximation in the short and large wavelength limits. When the upper layer is softer than the bottom layer (possibly, the case of the human brain), the selection mechanism is dominated by the physical properties of the upper layer. When the anisotropy favours the growth tangentially as for the human brain, it decreases the threshold value for gyri formation. The gyrification index is predicted by a post-buckling analysis and compared with experimental data. We also discuss some pathologies in the model framework.

Thu, 26 Oct 2017

14:00 - 15:00
L4

Solving discrete conic optimization problems using disjunctive programming

Dr Pietro Belotti
Abstract

Several optimization problems combine nonlinear constraints with the integrality of a subset of variables. For an important class of problems  called Mixed Integer Second-Order Cone Optimization (MISOCO), with applications in facility location, robust optimization, and finance, among others, these nonlinear constraints are second-order (or Lorentz) cones.

For such problems, as for many discrete optimization problems, it is crucial to understand the properties of the union of two disjoint sets of feasible solutions. To this end, we apply the disjunctive programming paradigm to MISOCO and present conditions under which the convex hull of two disjoint sets can be obtained by intersecting the feasible set with a specially constructed second-order cone. Computational results show that such cone has a positive impact on the solution of MISOCO problems.

Thu, 26 Oct 2017
12:00
L4

The Cauchy problem for the Landau-Lifshitz-Gilbert equation in BMO and self-similar solutions

Susana Gutierrez
(University of Birmingham)
Abstract

The Landau-Lifshitz-Gilbert equation (LLG) is a continuum model describing the dynamics for the spin in ferromagnetic materials. In the first part of this talk we describe our work concerning the properties and dynamical behaviour of the family of self-similar solutions under the one-dimensional LLG-equation.  Motivated by the properties of this family of self-similar solutions, in the second part of this talk we consider the Cauchy problem for the LLG-equation with Gilbert damping and provide a global well-posedness result provided that the BMO norm of the initial data is small.  Several consequences of this result will be also given.

Wed, 25 Oct 2017

16:00 - 17:00
C5

Trees, Lattices and Superrigidity

Elia Fioravanti
(University of Oxford)
Abstract

If $G$ is an irreducible lattice in a semisimple Lie group, every action of $G$ on a tree has a global fixed point. I will give an elementary discussion of Y. Shalom's proof of this result, focussing on the case of $SL_2(\mathbb{R}) \times SL_2(\mathbb{R})$. Emphasis will be placed on the geometric aspects of the proof and on the importance of reduced cohomology, while other representation theoretic/functional analytic tools will be relegated to a couple of black boxes.

Wed, 25 Oct 2017
11:00
N3.12

Exploring modular forms through modular symbols.

Jamie Beacom
Abstract

Modular forms holomorphic functions on the upper half of the complex plane, H, invariant under certain matrix transformations of H. The have a very rich structure - they form a graded algebra over C and come equipped with a family of linear operators called Hecke operators. We can also view them as functions on a Riemann surface, which we refer to as a modular curve. It transpires that the integral homology of this curve is equipped with such a rich structure that we can use it to compute modular forms in an algorithmic way. The modular symbols are a finite presentation for this homology, and we will explore this a little and their connection to modular symbols.