Mon, 13 Oct 2008

17:00 - 18:00
Gibson 1st Floor SR

Liouville type theorems for Navier-Stokes equations

Gregory Seregin
(Oxford)
Abstract

In the lecture, I am going to explain a connection between

local regularity theory for the Navier-Stokes equations

and Liouville type theorems for bounded ancient solutions to

these equations.

Mon, 13 Oct 2008
15:45
Oxford-Man Institute

Dewonderizing a result of Carne about random walks

Mr. Remi Peyre
(ENS Lyons)
Abstract

I talk about a recent article of mine that aims at giving an alternative proof to a formula by Carne on random walks. Consider a discrete, reversible random walk on a graph (not necessarily the simple walk); then one has a surprisingly simple formula bounding the probability of getting from a vertex x at time 0 to another vertex y at time t, where it appears a universal Gaussian factor essentially depending on the graph distance between x and y. While Carne proved that result in 1985, through‘miraculous’ (though very pretty!) spectral analysis reasoning, I will expose my own ‘natural' probabilistic proof of that fact. Its main interest is philosophical, but it also leads to a generalization of the original formula. The two main tools we shall use will be techniques of forward and backward martingales, and a tricky conditioning argument to prevent a random walk from being `’too transient'.

Mon, 13 Oct 2008
14:15
Oxford-Man Institute

Drift, draft and structure: modelling evolution in a spatial continuum.

Prof. Alison Etheridge
(Oxford)
Abstract

One of the outstanding successes of mathematical population genetics is Kingman's coalescent. This process provides a simple and elegant description of the genealogical trees relating individuals in a sample of neutral genes from a panmictic population, that is, one in which every individual is equally likely to mate with every other and all individuals experience the same conditions. But real populations are not like this. Spurred on by the recent flood of DNA sequence data, an enormous industry has developed that seeks to extend Kingman's coalescent to incorporate things like variable population size, natural selection and spatial and genetic structure. But a satisfactory approach to populations evolving in a spatial continuum has proved elusive. In this talk we describe the effects of some of these biologically important phenomena on the genealogical trees before describing a new approach (joint work with Nick Barton, IST Austria) to modelling the evolution of populations distributed in a spatial continuum.

Mon, 13 Oct 2008

12:00 - 13:00
L3

Calabi-Yau Manifolds with Small Hodge Numbers

Rhys Davies
(Oxford)
Abstract

Abstract: It is known that many Calabi-Yau manifolds form a connected web. The question of whether all CY manifolds form a single web depends on the degree of singularity that is permitted for the varieties that connect  the distinct families of smooth manifolds. If only conifolds are allowed then, since shrinking two-spheres and three-spheres to points cannot affect the fundamental group, manifolds with different fundamental groups will form disconnected webs. We examine these webs for the tip of the distribution of CY manifolds where the Hodge numbers $(h^{11},h^{21})$ are both small. In the tip of the distribution the quotient manifolds play an important role. We generate via conifold transitions from these quotients a number of new manifolds. These include a manifold with $\chi =-6$, that is an analogue of the $\chi=-6$ manifold found by Yau,  and manifolds with an attractive structure that may prove of interest for string phenomenology.

Thu, 09 Oct 2008
17:00
L3

On Intersection with Tori

Amador Martin-Pizarro
(Université Lyon I)
Abstract
In 2006, a bad field was constructed (together with Baudisch, Hils and Wagner) collapsing Poizat's green fields. In this talk, we will not concentrate on the general methodology for collapsing specific structures, but more on a specific result in algebraic geometry, a weaker version of the Conjecture on Intersection with Tori (CIT). We will present a model theoretical proof of this result as well as discuss the possible generalizations to positive characteristic. We will try to make the talk  self-contained and aimed for an audience with a basic acquaintance with Model Theory.

Thu, 09 Oct 2008

14:00 - 15:00
Comlab

Barycentric coordinates and transfinite interpolation

Prof Michael Floater
(University of Oslo)
Abstract

Recent generalizations of barycentric coordinates to polygons and polyhedra, such as Wachspress and mean value coordinates, have been used to construct smooth mappings that are easier to compute than harmonic amd conformal mappings, and have been applied to curve and surface modelling.

We will summarize some of these developments and then discuss how these coordinates naturally lead to smooth transfinite interpolants over curved domains, and how one can also match derivative data on the domain boundary.

Thu, 09 Oct 2008

13:30 - 14:30
Gibson 1st Floor SR

New Results on Travelling Waves in Hamiltonian Lattices

Michael Herrmann
(University of Oxford)
Abstract

Travelling waves are highly symmetric solutions to the Hamiltonian lattice equation and are determined by nonlinear advance-delay differential equations. They provide much insight into the microscopic dynamics and are moreover fundamental building blocks for macroscopic

lattice theories.

In this talk we concentrate on travelling waves in convex FPU chains and study both periodic waves (wave trains) and homoclinic waves (solitons). We present a new existence proof which combines variational and dynamical concepts.

In particular, we improve the known results by showing that the profile functions are unimodal and even.

Finally, we study the complete localization of wave trains and address additional complications that arise for heteroclinic waves (fronts).(joint work with Jens D.M. Rademacher, CWI Amsterdam)

Tue, 07 Oct 2008

12:00 - 13:00
L3

On the Extraction of Physical Content from Asymptotically Flat Space-times Metrics

Prof E T Newman
(University of Pittsburgh)
Abstract

A major issue in general relativity, from its earliest days to the

present, is how to extract physical information from any solution or

class of solutions to the Einstein equations. Though certain

information can be obtained for arbitrary solutions, e.g., via geodesic

deviation, in general, because of the coordinate freedom, it is often

hard or impossible to do. Most of the time information is found from

special conditions, e.g., degenerate principle null vectors, weak

fields close to Minkowski space (using coordinates close to Minkowski

coordinates) or from solutions that have symmetries or approximate

symmetries. In the present work we will be concerned with

asymptotically flat space times where the approximate symmetry is the

Bondi-Metzner-Sachs (BMS) group. For these spaces the Bondi

four-momentum vector and its evolution, found from the Weyl tensor at

infinity, describes the total energy-momentum of the interior source

and the energy-momentum radiated. By generalizing certain structures

from algebraically special metrics, by generalizing the Kerr and the

charged-Kerr metric and finally by defining (at null infinity) the

complex center of mass (the real center of mass plus 'i' times the

angular momentum) with its transformation properties, a large variety

of physical identifications can be made. These include an auxiliary

Minkowski space viewed from infinity, kinematic meaning to the Bondi

momentum, dynamical equations of motion for the center of mass, a

geometrically defined spin angular momentum and a conservation law with

flux for total angular momentum.

Mon, 06 Oct 2008

17:00 - 18:00
Gibson 1st Floor SR

The analysis of Willmore Surfaces

Tristan Rivière
Abstract

The Willmore Functional for surfaces has been introduced for the first time almost one century ago in the framework of conformal geometry (though it's one dimensional version already appears in thework of Daniel Bernouilli in the XVIII-th century). Maybe because of its simplicity and the depth of its mathematical relevance, it has since then played a significant role in various fields of sciences and technology such as cell biology, non-linear elasticity, general relativity...optical design...etc.

Critical points to the Willmore Functional are called Willmore Surfaces. They satisfy the so called Willmore Equations introduced originally by Gerhard Thomsen in 1923 . This equation, despite the elegance of it's formulation, is very inappropriate for dealing with analysis questions such as regularity, compactness...etc. We will present a new formulation of the Willmore Euler-Lagrange equation and explain how this formulation, together with the Integrability by compensation theory, permit to solve fundamental analysis questions regarding this functional, which were untill now totally open.

Mon, 06 Oct 2008

11:30 - 12:30
Gibson 1st Floor SR

Decomposition Theorem, Orthogonality principle and Localization principle - the three components of the sufficiency proof (I)

Yury Grabovsky
(Temple University, US)
Abstract
The proof of quasiconvexity based sufficient conditions for strong local minima in vectorial variational problems consists of three major parts: the Decomposition Theorem, the Orthogonality principle and the Localization principle. The first and the last are the most technical.
In these talks I will explain the technical difficulties and the ways in which they were overcome.
Fri, 03 Oct 2008

10:00 - 17:00
L2

Elastic Stability Workshop

Becca Thomases, Yury Grabovsky, L Mahadevan, Tim Healey, Heinrich Freistühler and Robin Knops
Abstract

The workshop will address current issues related to the stability of solutions in nonlinear elasticity, including local energy minimizers, the stability of growing bodies, global existence for small data, bifurcation and continuation of solutions, and Saint-Venant’s principle.

Thu, 02 Oct 2008

13:30 - 14:30
Gibson 1st Floor SR

Mixing Transitions and Oscillations in Low-Reynolds Number Viscoelastic Fluids

Becca Thomases
(University of California, Davis)
Abstract

In the past several years it has come to be appreciated that in low Reynolds number flow the nonlinearities provided by non-Newtonian stresses of a complex fluid can provide a richness of dynamical behaviors more commonly associated with high Reynolds number Newtonian flow. For example, experiments by V. Steinberg and collaborators have shown that dilute polymer suspensions being sheared in simple flow geometries can exhibit highly time dependent dynamics and show efficient mixing. The corresponding experiments using Newtonian fluids do not, and indeed cannot, show such nontrivial dynamics. To better understand these phenomena we study the Oldroyd-B viscoelastic model. We first explain the derivation of this system and its relation to more familiar systems of Newtonian fluids and solids and give some analytical results for small data perturbations. Next we study this and related models numerically for low-Reynolds number flows in two dimensions. For low Weissenberg number (an elasticity parameter), flows are "slaved" to the four-roll mill geometry of the fluid forcing. For sufficiently large Weissenberg number, such slaved solutions are unstable and under perturbation transit in time to a structurally dissimilar flow state dominated by a single large vortex, rather than four vortices of the four-roll mill state. The transition to this new state also leads to regions of well-mixed fluid and can show persistent oscillatory behavior with continued destruction and generation of smaller-scale vortices.

Thu, 18 Sep 2008

13:30 - 14:30
Gibson 1st Floor SR

Characterization of generalized gradient Young measures in $W^{1,1}$ and $BV$

Filip Rindler
(Technical University of Berlin)
Abstract

This talk first introduces generalized Young measures (or DiPerna/Majda measures) in an $L^1$-setting. This extension to classical Young measures is able to quantitatively account for both oscillation and concentration phenomena in generating sequences.

We establish several fundamental properties like compactness and representation of nonlinear integral functionals and present some examples. Then, generalized Young measures generated by $W^{1,1}$- and $BV$-gradients are more closely examined and several tools to manipulate them (including averaging and approximation) are presented.

Finally, we address the question of characterizing the set of generalized Young measures generated by gradients in the spirit of the Kinderlehrer-Pedregal Theorem.

This is joint work with Jan Kristensen.

Wed, 17 Sep 2008

16:00 - 17:00
L3

Quiver representations and the enumeration of graphs

Fernando Rodriguez-Villegas
(UT Austin)
Abstract

We show that the leading terms of the number of absolutely indecomposable representations of a quiver over a finite field are related to counting graphs. This is joint work with Geir Helleloid.

Tue, 16 Sep 2008

15:30 - 16:30
Gibson 1st Floor SR

A Posteriori Error Estimates for PDE Constrained Optimization with Pointwise State Constraints

Winnifried Wollner
(Heidelberg)
Abstract
This talk is devoted to adaptivity in optimal control of PDEs with special emphasis on barrier methods for pointwise state constraints. The talk is divided into to major parts, first we will discuss the case of additional pointwise inequality constraints on the state variable, then we will transfer the results to constraints on the gradient of the state. Each part will start with a discussion of necessary optimality conditions and a brief overview about what is known and what is not known concerning a priori analysis. Then a posteriori error estimates for the discretization error as well as for the error from the barrier method will be presented. Finally we show some simple examples to illustrate the behavior of the estimators. 
The talk will be followed by an informal tea in the Gibson Building seminar room giving an opportunity to chat with Winnifried Wollner and Amit Acharya (our other current OxMOS visitor)
Tue, 16 Sep 2008

14:00 - 15:00
Gibson 1st Floor SR

Non-periodic Γ-convergence

Helia Serrano
(Universidad de Castilla-La Mancha)
Abstract

Γ-convergence is a variational convergence on functionals. The explicit characterization of the integrand of the Γ-limit of sequences of integral functionals with periodic integrands is by now well known. Here we focus on the explicit characterization of the limit energy density of a sequence of functionals with non-periodic integrands. Such characterization is achieved in terms of the Young measure associated with relevant sequences of functions. Interesting examples are considered.

Mon, 01 Sep 2008

13:30 - 14:30
Gibson 1st Floor SR

About yield surfaces of phase transformation for some shape memory alloys: duality and convexity. Application to fracture.

Christian Lexcellent
(University of Franche-Comte)
Abstract

Multiaxial mechanical proportional loadings on shape memory alloys undergoing phase transformation permit to determine the yield curve of phase transformation initiation in the stress space. We show how to transport this yield surface in the set of effective transformation strains of producted phase M. Two numerical applications are done concerning a Cu Al Be and a Ni Ti polycrystallines shape memory alloys. A special attention is devoted to establish a convexity criterium of these surfaces.

Moreover an application to the determination of the phase transformation surface around the crack tip for SMA fracture is performed.

At last some datas are given concerning the SMA damping behavior

AUTHORS

Christian Lexcellent, Rachid Laydi, Emmanuel Foltete, Manuel collet and Frédéric Thiebaud

FEMTO-ST Département de Mécanique Appliquée Université de Franche Comte Besançon France

Tue, 29 Jul 2008
14:15
L3

The space of graphs in Euclidean space.

Soren Galatius
Abstract

A graph in R^n is a closed subset that locally looks like R (edges) or like a wedge of half intervals (vertices). I will describe a topology on the space of all such graphs and determine its homotopy type. This is one step in determining the homology of Aut(F_n), the automorphism group of a free group, in the limit where n goes to infinity.

Wed, 23 Jul 2008

14:30 - 15:30
SR1

Isomorphism Types of Maximal Cofinitary Groups

Bart Kastermans
(Wisconsin)
Abstract

Cofinitary groups are subgroups of the symmetric group on the natural numbers

(elements are bijections from the natural numbers to the natural numbers, and

the operation is composition) in which all elements other than the identity

have at most finitely many fixed points. We will give a motivation for the

question of which isomorphism types are possible for maximal cofinitary

groups. And explain some of the results we achieved so far.

Fri, 18 Jul 2008

13:30 - 14:30
Gibson 1st Floor SR

On Monge-Ampere type equations with supplementary ellipticity

Neil Trudinger
(Australian National University)
Abstract

We present a selection of recent results pertaining to Hessian

and Monge-Ampere equations, where the Hessian matrix is augmented by a

matrix valued lower order operator. Equations of this type arise in

conformal geometry, geometric optics and optimal transportation.In

particular we will discuss structure conditions, due to Ma,Wang and

myself, which imply the regularity of solutions.These conditions are a

refinement of a condition used originally by Pogorelev for general

equations of Monge-Ampere type in two variables and called strong

ellipticity by him.

Thu, 17 Jul 2008
11:00
L3

2-dimensional extended Topological Quantum Field Theories and categorification

Hendryk Pfeiffer
(UBC)
Abstract

A 2-dimensional Topological Quantum Field Theory (TQFT) is a symmetric monoidal functor from the category of 2-dimensional cobordisms to the category of vector spaces. A classic result states that 2d TQFTs are classified by commutative Frobenius algebras.  I show how to extend this result to open-closed TQFTs using a class of 2-manifolds with corners, how to use the Moore-Segal relations in order to find a canonical form and a complete set of invariants for our cobordisms and how to classify open-closed TQFTs algebraically.  Open-closed TQFTs can be used to find algebraic counterparts of Bar-Natan's topological extension of Khovanov homology from links to tangles and in order to get hold of the braided monoidal 2-category that governs this aspect of Khovanov homology. I also sketch what open-closed TQFTs reveal about the categorical ladder of combinatorial manifold invariants according to Crane and Frenkel.

references:

1] A. D. Lauda, H. Pfeiffer:

Open-closed strings: Two-dimensional extended TQFTs and Frobenius algebras,

Topology Appl. 155, No. 7 (2008) 623-666, arXiv:math/0510664

2] A. D. Lauda, H. Pfeiffer: State sum construction of two-dimensional open-closed Topological Quantum Field Theories,

J. Knot Th. Ramif. 16, No. 9 (2007) 1121-1163,arXiv:math/0602047

3] A. D. Lauda, H. Pfeiffer: Open-closed TQFTs extend Khovanov homology from links to tangles, J. Knot Th. Ramif., in press, arXiv:math/0606331.

Mon, 07 Jul 2008

14:15 - 15:15
L3

Lagrangian Mean Curvature Flow

Yng-Ing Lee
(National Taiwan University)
Abstract

Mean curvature vector is the negative gradient of the area functional. Thus if we deform a submanifold along its mean curvature vector, which is called mean curvature flow (MCF), the area will decrease most rapidly. When the ambient manifold is Kahler-Einstein, being Lagrangian is preserved under MCF. It is thus very natural trying to construct special Lagrangian/ Lagrangian minimal through MCF. In this talk, I will make a brief introduction and report some of my recent works with my coauthors in this direction, which mainly concern the singularities of the flow.

Mon, 30 Jun 2008

14:15 - 15:15
L3

Donaldson-Thomas and Gromov-Witten theory of Calabi-Yau orbifolds

Jim Bryan
(UBC, Vancouver)
Abstract

There are two basic theories of curve counting on Calabi-Yau threefolds. Donaldson-Thomas theory arises by considering curves as subschemes; Gromov-Witten theory arises by considering curves as the image of maps. Both theories can also be formulated for orbifolds. Let X be a dimension three Calabi-Yau orbifold and let

Y --> X be a Calabi-Yau resolution. The Gromov-Witten theories of X and Y are related by the Crepant Resolution Conjecture. The Gromov-Witten and Donaldson-Thomas theories of Y are related by the famous MNOP conjecture. In this talk I will (with some provisos) formulate the remaining equivalences: the crepant resolution conjecture in Donaldson-Thomas theory and the MNOP conjecture for orbifolds. I will discuss examples to illustrate and provide evidence for the conjectures.

Fri, 13 Jun 2008
15:15
L3

Representations of positive real polynomials

Alex Prestel
(Konstanz)
Abstract

We consider finite sequences $h = (h_1, . . . h_s)$ of real polynomials in $X_1, . . . ,X_n$ and assume that

the semi-algebraic subset $S(h)$ of $R^n$ defined by $h1(a1, . . . , an) \leq 0$, . . . , $hs(a1, . . . , an) \leq 0$ is

bounded. We call $h$ (quadratically) archimedean if every real polynomial $f$, strictly positive on

$S(h)$, admits a representation

$f = \sigma_0 + h_1\sigma_1 + \cdots + h_s\sigma_s$

with each $\sigma_i$ being a sum of squares of real polynomials.

If every $h_i$ is linear, the sequence h is archimedean. In general, h need not be archimedean.

There exists an abstract valuation theoretic criterion for h to be archimedean. We are, however,

interested in an effective procedure to decide whether h is archimedean or not.

In dimension n = 2, E. Cabral has given an effective geometric procedure for this decision

problem. Recently, S. Wagner has proved decidability for all dimensions using among others

model theoretic tools like the Ax-Kochen-Ershov Theorem.

Fri, 13 Jun 2008
14:15
DH 1st floor SR

Informative Traders

Dorje Brody
(Imperial)
Abstract

A modelling framework is introduced in which there is a small agent who is more susceptible to the flow of information in the market as compared to the general market participants. In this framework market participants have access to a stream of noisy information concerning the future returns of the asset, whereas an informative trader has access to an additional information source which is also obscured by further noise, which may be correlated with the market noise. The informative trader utilises the extraneous information source to seek statistical arbitrage opportunities, in exchange with accommodating the additional risk. The information content of the market concerning the value of the impending cash flow is represented by the mutual information of the asset price and the associated cash flow. The worthiness of the additional information source is then measured in terms of the difference of mutual information between market participants and the informative trader. This difference is shown to be strictly nonnegative for all parameter values in the model, when signal-to-noise ratio is known in advance. Trading strategies making use of the additional information are considered. (Talk is based on joint work with M.H.A. Davis (Imperial) & R.L. Friedman (Imperial & Royal Bank of Scotland).

Thu, 12 Jun 2008
16:00
L3

Characterizing Z in Q with a universal-existential formula

Bjorn Poonen
(Berkeley)
Abstract

Refining Julia Robinson's 1949 work on the undecidability of the first order theory of Q, we prove that Z is definable in Q by a formula with 2 universal quantifiers followed by 7 existential quantifiers. It follows that there is no algorithm for deciding, given an algebraic family of Q-morphisms, whether there exists one that is surjective on rational points.