Mon, 05 Nov 2007
14:45
L3

Asymptotics of the cell decomposition of Teichmueller space

Bob Penner
(USC and Aarhus)
Abstract
Recent joint work with Greg McShane has answered the following question: Which curves can be short in a given cell of the decomposition of Teichmueller space? The answer involves a new combinatorial structure called "screens on fatgraphs" as we shall describe. The techniques of proof involve Fock's path-ordered product expansion of holonomies, Ptolemy transformations, and the triangle inequalities. This is a main step in giving a combinatorial description of the Deligne-Mumford compactification of moduli space which we shall also discuss as time permits.
Mon, 05 Nov 2007

13:15 - 14:15
Oxford-Man Institute

Local Spectral Gaps on the Mean Field Ising Model and Multilevel MCMC methods

Mr. Nikolaus Schweizer
(Universitat Bonn)
Abstract

I consider the Metropolis Markov Chain based on the nearest neighbor random walk on the positive half of the Mean Field Ising Model, i.e., on those vectors from $\{−1, 1\}^N$ which contain more $1$ than $−1$. Using randomly-chosen paths I prove a lower bound for the Spectral Gap of this chain which is of order $N^-2$ and which does not depend on the inverse temperature $\beta$. In conjunction with decomposition results such as those in Jerrum, Son, Tetali and Vigoda (2004) this result may be useful for bounding the spectral gaps of more complex Markov chains on the Mean Field Ising Model which may be decomposed into Metropolis chains. As an example, I apply the result to two Multilevel Markov Chain Monte Carlo algorithms, Swapping and Simulated Tempering. Improving a result by Madras and Zheng (2002), I show that the spectral gaps of both algorithms on the (full) Mean Field Ising Model are bounded from below by the reciprocal of a polynomial in the lattice size $N$ and in the inverse temperature $\beta$.

Fri, 02 Nov 2007
15:30
L2

From Weyl type asymptotics to Lieb-Thirring inequalities

Prof Ari Laptev
(Imperial College, London)
Abstract

We shall begin with simple Weyl type asymptotic formulae for the spectrum of Dirichlet Laplacians and eventually prove a new result which I have recently obtained, jointly with J. Dolbeault and M. Loss. Following Eden and Foias, we derive a matrix version of a generalised Sobolev inequality in one dimension. This allows us to improve on the known estimates of best constants in Lieb-Thirring inequalities for the sum of the negative eigenvalues for multi-dimensional Schrödinger operators.

Bio: Ari Laptev received his PhD in Mathematics from Leningrad University (LU) in 1978, under the supervision of Michael Solomyak. He is well known for his contributions to the Spectral Theory of Differential Operators. Between 1972 - 77 and 1977- 82 he was employed as a junior researcher and as Assistant Professor at the Mathematics & Mechanics Department of LU. In 1981- 82 he held a post-doc position at the University of Stockholm and in 1982 he lost his position at LU due to his marriage to a British subject. Up until his emigration to England in 1987 he was working as a builder, constructing houses in small villages in the Novgorod district of Russia. In 1987 he was employed in Sweden, first as a lecturer at Linköping University and then from 1992 at the Royal Institute of Technology (KTH). In 1999 he became a professor at KTH and also Vice Chairman of its Mathematics Department. In 1992 he was granted Swedish citizenship. Ari Laptev was the President of the Swedish Mathematical Society from 2001 to 2003 and the President of the Organizing Committee of the Fourth European Congress of Mathematics in Stockholm in 2004. From January 2007 he has been employed by Imperial College London. Ari Laptev has supervised twelve PhD students. From January 2007 until the end of 2010 he is President of the European Mathematical Society.

Thu, 01 Nov 2007
15:00
L3

The Circle Problem

Peter Swinnerton-Dyer
(Cambridge)
Abstract

Let N(A) be the number of integer solutions of x^2 + y^2

Thu, 01 Nov 2007

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Communication avoiding algorithms for dense LU and QR factorizations

Dr Laura Grigori
(INRIA)
Abstract

We present algorithms for dense LU and QR factorizations that minimize the cost of communication. One of today's challenging technology trends is the increased communication cost. This trend predicts that arithmetic will continue to improve exponentially faster than bandwidth, and bandwidth exponentially faster than latency. The new algorithms for dense QR and LU factorizations greatly reduce the amount of time spent communicating, relative to conventional algorithms.

This is joint work with James Demmel, Mark Hoemmen, Julien Langou, and Hua Xiang.

Thu, 01 Nov 2007

11:00 - 12:00
SR1

Hyperbolic 3-manifolds

Liam Wall
(University of Oxford)
Abstract

In this talk I will introduce hyperbolic 3-manifolds, state some major conjectures about them, and discuss some group-theoretic properties of their fundamental groups.

Tue, 30 Oct 2007
15:30
L3

Infinite locally random graphs

Pierre Charbit
(Paris)
Abstract
The Rado Graph R is a graph on a countably infinite number of vertices that can be characterized by the following property: for every pair of finite, disjoint subsets of vertices X and Y, there exists a vertex that is adjacent to every vertex in X and none in Y. It is often called the Random Graph for the following reason: for any 0

Tue, 30 Oct 2007
13:30
L3

Random polytopes

Matthias Reitzner
(Vienna)
Abstract
Let $K \subset {\mathbb R}^d$ be a convex set. Choose $n$ random points in $K$, and denote by $P_n$ their convex hull. We call $P_n$ a random polytope. Investigations concerning the expected value of functionals of $P_n$, like volume, surface area, and number of vertices, started in 1864 with a problem raised by Sylvester and now are a classical part of stochastic and convex geometry. The last years have seen several new developments about distributional aspects of functionals of random polytopes. In this talk we concentrate on these recent results such as central limit theorems and tail inequalities, as the number of random points tends to infinity.
Tue, 30 Oct 2007
11:00
L3

Towards a proof of a rigidity conjecture for asymptotically flat spacetimes

Juan Valiente Kroon
(Queen Mary College, London)
Abstract

I will discuss ongoing work to provide a proof for the following

conjecture: if the development of a time symmetric, conformally flat

initial data set admits a smooth null infinity, then the initial data

is Schwarzschildean in a neighbourhood of infinity. The strategy

to construct a proof consists in a detailed analysis of a

certain type of expansions that can be obtained using H. Friedrich's

"cylinder at infinity" formalism. I will also discuss a toy model for

the analysis of the Maxwell field near the

spatial infinity of the Schwarzschild spacetime

Mon, 29 Oct 2007

15:00 - 16:00
SR1

The Tschinkel Problem

Nic Niedermowwe
(Mathematical Institute Oxford)
Mon, 29 Oct 2007
14:45
Oxford-Man Institute

On signed probability measures and some old results of Krylov

Prof. Terry Lyons
(Oxford)
Abstract

It is an interesting exercise to compute the iterated integrals of Brownian Motion and to calculate the expectations (of polynomial functions of these integrals).

Recent work on constructing discrete measures on path space, which give the same value as Wiener measure to certain of these expectations, has led to promising new numerical algorithms for solving 2nd order parabolic PDEs in moderate dimensions. Old work of Krylov associated finitely additive signed measures to certain constant coefficient PDEs of higher order. Recent work with Levin allows us to identify the relevant expectations of iterated integrals in this case, leaving many interesting open questions and possible numerical algorithms for solving high dimensional elliptic PDEs.

Mon, 29 Oct 2007
13:15
Oxford-Man Institute

From super Poincare to weighted log-sobolev and transportation cost inequalities

Prof. Feng-Yu Wang
(University of Wales)
Abstract

Log-Sobolev inequalities with weighted square field are derived from a class of super Poincaré inequalities. As applications, stronger versions of Talagrand's transportation-cost inequality are provided on Riemannian manifolds. Typical examples are constructed to illustrate these results.

Mon, 29 Oct 2007

11:00 - 12:00
L3

What is Twistor-String Theory

Lionel Mason
(Oxford)
Abstract
Abstract: Twistor-string theory is reformulated as a `half-twisted heterotic' theory with target $CP^3$. This in effect gives a Dolbeault formulation of a theory of holomorphic curves in twistor space and gives a clearer picture of the mathematical structures underlying the theory and how they arise from the original Witten and Berkovits models. It is also explained how space-time physics arises from the model. It intended that the lecture be, to a certain extent, pedagogical.
Thu, 25 Oct 2007
16:15
Fisher Room of NAPL

New Searches for sub-gravitational forces

Jay Wacker
(SLAC)
Abstract

I will describe how atom interferometry can be used to set limits on beyond the Standard Model forces.

Thu, 25 Oct 2007

14:00 - 15:00
Comlab

A Primal-Dual Augmented Lagrangian

Dr Daniel Robinson
(University of Oxford)
Abstract

A new primal-dual augmented Lagrangian merit function is proposed that may be minimized with respect to both the primal and dual variables. A benefit of this approach is that each subproblem may be regularized by imposing explicit bounds on the dual variables. Two primal-dual variants of classical primal methods are given: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual l1 linearly constrained Lagrangian (pdl1-LCL) method.

Thu, 25 Oct 2007

12:00 - 13:00
SR1

Why did Lie Invent Lie Groups?

Mitul Shah
(University of Oxford)
Abstract

This talk will be about the systematic simplification of differential equations.

After giving a geometric reformulation of the concept of a differential equation using prolongations, I will show how we can prolong group actions relatively easily at the level of Lie algebras. I will then discuss group-invariant solutions.

The key example will be the heat equation.

Wed, 24 Oct 2007

12:00 - 13:00
L3

<strong>(Note unusual day)</strong> Bows and Quivers: Instantons on ALF Spaces

Sergey Cherkis
(Trinity College Dublin)
Abstract
Abstract: Self-dual connections on ALF spaces can be encoded in terms of bow diagrams, which are natural generalizations of quivers. This provides a convenient description of the moduli spaces of these self-dual connections. We make some comments about the associated twistor data. Via the Nahm transform we construct two explicit examples: a single instanton and a single monopole on a Taub-NUT space.
Tue, 23 Oct 2007
16:30
SR1

A new tool for asymptotic enumeration: the Lovasz Local Lemma?

Laszlo Szekely
(USC)
Abstract
The Lovasz Local Lemma is known to have an extension for cases where the dependency graph requirement is relaxed to negative dependency graph (Erdos-Spencer 1991). The difficulty is to find relevant negative dependency graphs that are not dependency graphs. We provide two generic constructions for negative dependency graphs, in the space of random matchings of complete and complete bipartite graphs. As application, we prove existence results for hypergraph packing and Turan type extremal problems. We strengthen the classic probabilistic proof of Erdos for the existence of graphs with large girth and chromatic number by prescribing the degree sequence, which has to satisfy some mild conditions. A more surprising application is that tight asymptotic lower bounds can be obtained for asymptotic enumeration problems using the Lovasz Local Lemma. This is joint work with Lincoln Lu.