11:00
Towards a proof of a rigidity conjecture for asymptotically flat spacetimes
Abstract
I will discuss ongoing work to provide a proof for the following
conjecture: if the development of a time symmetric, conformally flat
initial data set admits a smooth null infinity, then the initial data
is Schwarzschildean in a neighbourhood of infinity. The strategy
to construct a proof consists in a detailed analysis of a
certain type of expansions that can be obtained using H. Friedrich's
"cylinder at infinity" formalism. I will also discuss a toy model for
the analysis of the Maxwell field near the
spatial infinity of the Schwarzschild spacetime