Mon, 15 Oct 2007
14:15
Oxford-Man Institute

TBA

Professor Dimitri Kramkov
(Oxford and Carnegie Mellon University)
Mon, 15 Oct 2007

12:00 - 13:00
L3

Calabi-Yau Metrics and the Solutions of the Laplacian

Volker Braun
(University of Pennsylvania)
Abstract
Abstract: Following Donaldson's approach we compute the Calabi-Yau metric on quintics, a four-generation quotient, Schoen threefolds and quotients thereof. Using the explicit Calabi-Yau metric, we then compute eigenvalues and eigenmodes of the Laplace operator.
Fri, 12 Oct 2007
15:15
L3

AXIOMATIZING FIELDS VIA GALOIS THEORY

J. Koenigsmann
(Oxford)
Abstract

By classical results of Tarski and Artin-Schreier, the elementary theory of the field of real numbers can be axiomatized in purely Galois-theoretic terms by describing the absolute Galois group of the field. Using work of Ax-Kochen/Ershov and a p-adic analogue of the Artin-Schreier theory the same can be proved for the field $\mathbb{Q}_p$ of p-adic numbers and for very few other fields.

Replacing, however, the absolute Galois group of a field K by that of the rational function field $K(t)$ over $K$, one obtains a Galois-theoretic axiomatiozation of almost arbitrary perfect fields. This gives rise to a new approach to longstanding decidability questions for fields like

$F_p((t))$ or $C(t)$.

Fri, 12 Oct 2007
14:15
Dennis Sciama LT

A Des Res in the Landscape

Prof. Philip Candelas
(Oxford)
Abstract
The Landscape problem in String Theory is the fact that there are apparently a great many possible vacua; each leading to a very different four dimensional world. I will give a survey of the space of possibilities and then argue that we may, after all, live in a naturally defined tip of the distribution.
Thu, 11 Oct 2007

14:00 - 15:00
Comlab

Explicit A Posteriori Error Analysis for Evolution Equation's Finite Element Approximation

Dr Omar Lakkis
(University of Sussex)
Abstract

I will address the usage of the elliptic reconstruction technique (ERT) in a posteriori error analysis for fully discrete schemes for parabolic partial differential equations. A posteriori error estimates are effective tools in error control and adaptivity and a mathematical rigorous derivation justifies and improves their use in practical implementations.

The flexibility of the ERT allows a virtually indiscriminate use of various parabolic PDE techniques such as energy methods, duality methods and heat-kernel estimates, as opposed to direct approaches which leave less maneuver room. Thanks to ERT parabolic stability techniques can be combined with different elliptic a posteriori error analysis techniques, such as residual or recovery estimators, to derive a posteriori error bounds. The method has the merit of unifying previously known approaches, as well as providing new ones and providing us with novel error bounds (e.g., pointwise norm error bounds for the heat equation). [These results are based on joint work with Ch. Makridakis and A. Demlow.]

Another feature, which I would like to highlight, of the ERT is its simplifying power. It allows us to derive estimates where the analysis would be very complicated otherwise. As an example, I will illustrate its use in the context of non-conforming methods, with a special eye on discontinuous Galerkin methods. [These are recent results obtained jointly with E. Georgoulis.]

Thu, 11 Oct 2007

12:00 - 13:00
SR1

The Poincaré - Hopf index theorem

Oscar Randal-Williams
(Oxford)
Abstract

We will prove an extended Poincaré - Hopf theorem, identifying several invariants of a manifold $M$. These are its Euler characteristic $\chi(M)$, the sum $\sum_{x_i} ind_V(x_i)$ of indices at zeroes of a vector field $V$ on $M$, the self-intersection number $\Delta \cap \Delta$ of the diagonal $\Delta \subset M \times M$ and finally the integral $\int_M e(TM)$ of the Euler class of the tangent bundle.

Thu, 11 Oct 2007

12:00 - 13:00
DH 3rd floor SR

OxMOS Lecture - Bifurcation Theory I

Carlos Mora-Corral
(Oxford University Mathematical Institute)
Abstract
Local Bifurcation Theory (I): Theorem of Crandall and Rabinowitz
Tue, 09 Oct 2007
14:30
L3

Tying down the diameter of G(n,p).

Bruce Reed
(McGill/INRIA/CNRS))
Abstract
We show that the diameter of G(n,p) is concentrated on one of three values provided the average degree p(n-1) goes to infity with n. This is joint work with N. Fountoulakis even though he refuses to admit it.
Tue, 09 Oct 2007
12:00
L3

The classification of higher-dimensional black holes

Stefan Hollands
Abstract
It has been known for some time that in more than 4 spacetime dimensions, there is a considerably larger variety of black "hole" solutions, having e.g. different horizon topology. In particular, they are no longer fully characterized by their asymptotic charges (mass, angular momenta) alone. We give a partial classification theorem for higher dimensions, for solutions with sufficiently many axial Killing fields. We show that higher dimensional black holes may be fully characterized by their asymptotic charges, together with certain "moduli" and "winding numbers" that are analogous to those of Seiffert fibrations. In particular, we find constraints on the possible horizon topologies. In 5 dimensions, they may be either a black "hole" (sphere), black "ring", or a black "lens".
Mon, 08 Oct 2007
17:00
L3

A zero-Laplacian approach to impedance imaging

Yves Capdeboscq
(Oxford)
Abstract
Electrical impedance tomography (EIT) technique has been an active research topic since the early 1980s. In EIT, one measures the boundary voltages due to multiple injection currents to reconstruct images of the conductivity distribution. However, these boundary voltages are insensitive to a local change of the conductivity distribution and the relation between them is highly nonlinear. Medical imaging has been one of the important application areas of EIT. Indeed, biological tissues have different electrical properties that change with cell concentration, cellular structure, and molecular composition. Such changes of electrical properties are the manifestations of structural, functional, metabolic, and pathological conditions of tissues, and thus provide valuable diagnostic information. Since all the present EIT technologies are only practically applicable in feature extraction of anomalies, improving EIT calls for innovative measurement techniques that incorporate structural information. The core idea of the approach presented in this talk is to extract more information about the conductivity from data that has been enriched by coupling the electric measurements to localized elastic perturbations. More precisely, we propose to perturb the medium during the electric measurements, by focusing ultrasonic waves on regions of small diameter inside the body. Using a simple model for the mechanical effects of the ultrasound waves, we show that the difference between the measurements in the unperturbed and perturbed configurations is asymptotically equal to the pointwise value of the energy density at the center of the perturbed zone. In practice, the ultrasounds impact a spherical or ellipsoidal zone, of a few millimeters in diameter. The perturbation should thus be sensitive to conductivity variations at the millimeter scale, which is the precision required for breast cancer diagnostic. The material presented in this talk concerning the imaging by perturbation approach, is based on a joint work with Habib Ammari, Eric Bonnetier, Michael Tanter & Mathias Fink and on an ongoing collaboration with Frédéric de Gournay, Otared Kavian and Jérôme Fehrenbach. I will also discuss recent results concerning perturbation of asymptotically small volume fraction which are based on joint works with Michael Vogelius.
Mon, 08 Oct 2007
15:45
L3

Quasiregular maps, hyperbolic groups, and rigidity of manifolds

Martin Bridson
(Oxford)
Abstract
Roughly speaking, a quasiregular map is a possibly-branched covering map with bounded distortion. The theory of such maps was developed in the 1970s to carry over to higher dimensions the more geometric aspects of the theory of complex analytic functions of the plane. In this talk I shall outline the proof of rigidity theorems describing the quasiregular self-maps of hyperbolic manifolds. These results rely on an extension of Sela's work concerning the stability of self-maps of hyperbolic groups, and on older topological ideas concerning discrete-open and light-open maps, particularly their effect on fundamental groups. I shall explain how these two sets of ideas also lead to topological rigidity theorems. This talk is based on a paper with a similar title by Bridson, Hinkkanen and Martin (to appear in Compositio shortly). http://www2.maths.ox.ac.uk/~bridson/papers/QRhyp/
Mon, 08 Oct 2007

12:00 - 13:00
L3

Baryonic Moduli Spaces and Counting Chiral Operators in SCFT's

Amihay Hanany
(Imperial College)
Abstract
Abstract: Supersymmetric gauge theories have a spectrum of chiral operators which are preserved under at least 2 supercharges. These operators are sometimes called BPS operators in the chiral ring. The problem of counting operators in the chiral ring is reasonably simple and reveals information about the moduli space of vacua for the supersymmetric gauge theory. In this talk I will review the counting problem and present exact results on the moduli space of both mesonic and baryonic operators for a large class of gauge theories
Thu, 04 Oct 2007

14:00 - 15:00
Comlab

On the computational complexity of optimization over a simplex, hypercube or sphere

Prof Etienne de Klerk
(Tilburg University)
Abstract

We consider the computational complexity of optimizing various classes

of continuous functions over a simplex, hypercube or sphere. These

relatively simple optimization problems arise naturally from diverse

applications. We review known approximation results as well as negative

(inapproximability) results from the recent literature.

Mon, 01 Oct 2007
16:00
L3

Some notions of smallness in Polish groups

Udayan Darji
(University of Louisville)
Abstract
In this talk we discusss some notions of small sets in Polish groups. We give some examples and applications of these notions in analysis and group theory. Moreover, we introduce a new notion of smallness which we call Haar meager sets. This notion coincides with the meager sets in locally compact groups. However, it is strictly stronger in the setting of nonlocally compact groups. We argue that this is the right topological analogue of Christian's Haar null sets. The speaker gratefully acknowledges the support of the LMS under a Scheme 2 Grant.
Mon, 01 Oct 2007

16:00 - 17:00
DH 3rd floor SR

OxMOS Team Meeting

Siobhan Burke and Pras Pathmananthan
(Oxford University)
Abstract
OxMOS Team Meetings are held regularly during term and are open to all. Two members of OxMOS will give a short update on their recent research.
Wed, 19 Sep 2007
15:00
L3

Hankel determinant formulae for the Painlevé

Dr M. Mazzocco
Abstract
In this talk I'll explore the meaning of the Hankel determinant formula for the general solutions of the Painleve' equations both from the analytic and the geometric point of view. I'll start with the simple example of PII and I'll show how the generating function for the Hankel determinant satisfies two Riccati equations. These linearize into the Jimbo-Miwa-Ueno isomonodromic deformation problem. Indeed this occurs for all the Painleve' equations PII,..,PVI and it is due to the link between their solutions and the infinite Toda lattice equation. I'll then explore the geometric meaning of the Hankel determinants by looking at the (suitably defined) spectral curve of the Toda lattice equation.
Wed, 19 Sep 2007
14:15
L3

Monodromy evolving deformations and Halphen-type

Dr Y. Ohyama
Abstract
Chakravarty and Ablowitz (PRL vol.76 p.857, 1996). showed that a fifth-order equation arizing from the Bianchi IX system can be described asmonodromy evolving (non-preserving) deformations. In my talk, we will show that general Halphen-type systems, which comes from generic DH-IX systems, can be represented as monodromy evolving deformations.
Tue, 11 Sep 2007
16:00
L1

On Nonlinear Partial Differential Equations of Mixed Type

Gui-Qiang Chen
(Northwestern University, USA)
Abstract
  In this talk we will discuss some recent developments in the study of nonlinear partial differential equations of mixed type, including the mixed parabolic-hyperbolic type and mixed elliptic-hyperbolic type. Examples include nonlinear degenerate diffusion-convection equations and transonic flow equations in fluid mechanics, as well as nonlinear equations of mixed type in a fluid mechanical formulation for isometric embedding problems in differential geometry. Further ideas, trends, and open problems in this direction will be also addressed.  
Wed, 01 Aug 2007
12:00
DH 1st floor SR

A model for a large investor who trades at market indifference prices

Dmitry Kramov
(Carnegie Mellon University)
Abstract
We present a continuous-time equilibrium-based model for large economic agent, where she trades with market makers at their utility indifference prices. The presentation is based on a joint project with Peter Bank.