Thu, 10 Mar 2016

16:00 - 17:00
L3

Dynamic homogenisation

Richard Craster
(ICL)
Abstract

The aim of this talk is to describe effective media for wave propagation through periodic, or nearly periodic, composites. Homogenisation methods are well-known and developed for quasi-static and low frequency regimes. The aim here is to move to situations of more practical interest where the frequencies are high, in some sense, and to compare the results of the theory with large scale simulations.

Thu, 10 Mar 2016
12:00
L6

Sharp decay estimates for waves on black holes and Price's law

Dejan Gajic
(Cambridge)
Abstract
Price’s law postulates inverse-power polynomial decay rates for solutions to the wave equation on Schwarzschild backgrounds with respect to appropriately normalized null coordinates. Polynomial decay rates as a lower bound are known in the physics literature as “late-time power law tails”. I will discuss new physical space methods for proving sharp decay rates for solutions to the wave equation on a class of asymptotically flat, stationary, spherically symmetric spacetimes, establishing in particular the upper bounds and lower bounds in Price’s law on Schwarzschild. This work has been done jointly with Yannis Angelopoulos and Stefanos Aretakis.
Wed, 09 Mar 2016

16:00 - 17:00
C3

Manifolds with odd Euler characteristic

Renee Hoekzema
(Oxford)
Abstract

Orientable manifolds can only have an odd Euler characteristic in dimensions divisible by 4. I will prove the analogous result for spin and string manifolds, where the dimension can only be a multiple of 8 and 16 respectively. The talk will require very little background. I'll go over the definition of spin and string structures, discuss cohomology operations and Poincare duality.

Wed, 09 Mar 2016
16:00
C2

Normal spanning trees in uncountable graphs

Max Pitz
(Hamburg)
Abstract

"In a paper from 2001, Diestel and Leader characterised uncountable graphs with normal spanning trees through a class of forbidden minors. In this talk we investigate under which circumstances this class of forbidden minors can be made nice. In particular, we will see that there is a nice solution to this problem under Martin’s Axiom. Also, some connections to the Stone-Chech remainder of the integers, and almost disjoint families are uncovered.”

Wed, 09 Mar 2016
15:00
L4

More Efficient Structure-Preserving Signatures: Or Bypassing the Lower Bounds

Essam Ghadafi
(University College London)
Abstract

Structure-preserving signatures are an important cryptographic primitive that is useful for the design of modular cryptographic protocols. In this work, we show how to bypass most of the existing lower bounds in the most efficient Type-III bilinear group setting. We formally define a new variant of structure-preserving signatures in the Type-III setting and present a number of fully secure schemes with signatures half the size of existing ones. We also give different constructions including constructions of optimal one-time signatures. In addition, we prove lower bounds and provide some impossibility results for the variant we define. Finally, we show some applications of the new constructions.

Tue, 08 Mar 2016

15:45 - 16:45
L4

The wall-crossing formula and spaces of quadratic differentials

Tom Bridgeland
(Sheffield)
Abstract

The wall-crossing behaviour of Donaldson-Thomas invariants in CY3 categories is controlled by a beautiful formula involving the group of automorphisms of a symplectic algebraic torus. This formula invites one to solve a certain Riemann-Hilbert problem. I will start by explaining how to solve this problem in the simplest possible case (this is undergraduate stuff!). I will then talk about a more general class of examples of the wall-crossing formula involving moduli spaces of quadratic differentials.

Tue, 08 Mar 2016
14:30
L3

Homogenized boundary conditions and resonance effects in Faraday cages

Dave Hewett
(University of Oxford)
Abstract

The Faraday cage effect is the phenomenon whereby electrostatic and electromagnetic fields are shielded by a wire mesh "cage". Nick Trefethen, Jon Chapman and I recently carried out a mathematical analysis of the two-dimensional electrostatic problem with thin circular wires, demonstrating that the shielding effect is not as strong as one might infer from the physics literature. In this talk I will present new results generalising the previous analysis to the electromagnetic case, and to wires of arbitrary shape. The main analytical tool is the asymptotic method of multiple scales, which is used to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. In the electromagnetic case one observes interesting resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. This is joint work with Ian Hewitt.

Tue, 08 Mar 2016
14:30
L6

Parking in Trees and Mappings - Enumerative Results and a Phase Change Behaviour

Marie-Louise Lackner
(Technical University of Vienna)
Abstract
Parking functions were originally introduced in the context of a hashing procedure and have since then been studied intensively in combinatorics. We apply the concept of parking functions to rooted labelled trees and functional digraphs of mappings (i.e., functions $f : [n] \to [n]$). The nodes are considered as parking spaces and the directed edges as one-way streets: Each driver has a preferred parking space and starting with this node he follows the edges in the graph until he either finds a free parking space or all reachable parking spaces are occupied. If all drivers are successful we speak about a parking function for the tree or mapping. Via analytic combinatorics techniques we study the total number $F_{n,m}$ and $M_{n,m}$ of tree and mapping parking functions, respectively, i.e. the number of pairs $(T,s)$ (or $(f,s)$), with $T$ a size-$n$ tree (or $f : [n] \to [n]$ an $n$-mapping) and $s \in [n]^{m}$ a parking function for $T$ (or for $f$) with $m$ drivers, yielding exact and asymptotic results. We describe the phase change behaviour appearing at $m=\frac{n}{2}$ for $F_{n,m}$ and $M_{n,m}$, respectively, and relate it to previously studied combinatorial contexts. Moreover, we present a bijective proof of the occurring relation $n F_{n,m} = M_{n,m}$.
Tue, 08 Mar 2016

14:15 - 15:30
L4

Strongly dense subgroups of semisimple algebraic groups.

Emmanuel Breuillard
(Orsay and Munster)
Abstract

A subgroup Gamma of a semisimple algebraic group G is called strongly dense if every subgroup of Gamma is either cyclic or Zariski-dense. I will describe a method for building strongly dense free subgroups inside a given Zariski-dense subgroup  Gamma of G, thus providing a refinement of the Tits alternative. The method works for a large class of G's and Gamma's. I will also discuss connections with word maps and expander graphs. This is joint work with Bob Guralnick and Michael Larsen.

Tue, 08 Mar 2016

12:00 - 13:15
L4

Boundary Conditions, Mirror Symmetry and Symplectic Duality

Dr Mat Bullimore
(Oxford)
Abstract

 In the last few years, it has become clear that there are striking connections between supersymmetry and geometric representation theory.  In this talk, I will discuss boundary conditions in three dimensional gauge theories with N = 4 supersymmetry.  I will then outline a physical understanding of a remarkable conjecture in representation theory known as `symplectic duality.

Mon, 07 Mar 2016

16:00 - 17:00
L4

Macroscopic transport: ballistic, diffusive, super diffusive

Stefano Olla
(Ceremade)
Abstract

In acoustic materials (non null sound velocity), there is a clear separation of scale between the relaxation to mechanical equilibrium, governed by Euler equations, and the slower relaxation to thermal equilibrium, governed by heat equation if thermal conductivity is finite. In one dimension in acoustic systems, thermal conductivity is diverging and the thermal equilibrium is reached by a superdiffusion governed by a fractional heat equation. In non-acoustic materials it seems that there is not such separation of scales, and thermal and mechanical equilibriums are reached at the same time scale, governed by a Euler-Bernoulli beam equation. We prove such macroscopic behaviors in chains of oscillators with dynamics perturbed by a random local exchange of momentum, such that energy and momentum are conserved. (Works in collaborations with T. Komorowski).

Mon, 07 Mar 2016
15:45
L6

Anosov representations and proper actions

Fanny Kassel
(University of Lille 1)
Abstract
 
Anosov representations of word hyperbolic groups into semisimple Lie groups provide a generalization of convex cocompact representations to higher real rank. I will explain how these representations can be used to construct properly discontinuous actions on homogeneous spaces. In certain cases, all properly discontinuous actions of quasi-isometrically embedded groups come from this construction. This is joint work with F. Guéritaud, O. Guichard, and A. Wienhard. 
Mon, 07 Mar 2016

15:45 - 16:45
C4

Superhedging Approach to Robust Finance and Local Times

David Proemel
((ETH) Zurich)
Abstract

Using Vovk's game-theoretic approach to mathematical finance and probability, it is possible to obtain new results in both areas.We first prove that one can make an arbitrarily large profit by investing in those one-dimensional paths which do not possess a local time of finite p-variation.  Additionally, we provide pathwise Tanaka formulas suitable for our local times and for absolutely continuous functions with sufficient regular derivatives. In the second part we derive a model-independent super-replication theorem in continuous time. Our result covers a broad range of exotic derivatives, including look-back options, discretely monitored Asian options, and options on realized variance.
 This talk is based on joint works with M. Beiglböck, A.M.G. Cox, M. Huesmann and N. Perkowski.


 

Mon, 07 Mar 2016

14:15 - 15:15
C4

Singular SPDEs on manifolds

Joscha Diehl
(TU Berlin)
Abstract

 

We show how the theories of paracontrolled distributions and regularity structures can be implemented on manifolds, to solve singular SPDEs like the parabolic Anderson model.

This is ongoing work with Bruce Driver (UCSD) and Antoine Dahlqvist (Cambridge)

 

 

Mon, 07 Mar 2016

12:00 - 13:00
L5

3d N=2 dualities with monopoles

Sara Pasquetti
(Surrey)
Abstract

I will present several new  3d N=2 dualities with super-potentials involving monopole operators. Some of the theories that I will discuss describe systems of D3 branes ending on pq-webs. In these cases  3d mirror symmetry is a consequence of S-duality.

 

Fri, 04 Mar 2016

15:30 - 16:30
L2

Hurricanes and Climate Change

Professor Kerry Emanuel
(MIT)
Abstract

In his talk, Kerry will explore the pressing practical problem of how hurricane activity will respond to global warming, and how hurricanes could in turn be influencing the atmosphere and ocean