Thu, 02 Feb 2006

14:00 - 15:00
Comlab

tba

Prof Mark Ainsworth
(University of Strathclyde)
Abstract

This Seminar has been cancelled and will now take place in Trinity Term, Week 3, 11 MAY.

Thu, 26 Jan 2006

14:00 - 15:00
Comlab

Inverse problems and stochastic differential equations

Prof Chris Farmer
(Schlumberger)
Abstract

Using the one-dimensional diffusion equation as an example, this seminar looks at ways of constructing approximations to the solution and coefficient functions of differential equations when the coefficients are not fully defined. There may, however, be some information about the solution. The input data, usually given as values of a small number of functionals of the coefficients and the solution, is insufficient for specifying a well-posed problem, and so various extra assumptions are needed. It is argued that looking at these inverse problems as problems in Bayesian statistics is a unifying approach. We show how the standard methods of Tikhonov Regularisation are related to special forms of random field. The numerical approximation of stochastic partial differential Langevin equations to sample generation will be discussed.

Mon, 23 Jan 2006
14:15
DH 3rd floor SR

Limit theorems for subsequences of random variables

Professor Sergey Bobkov
(University of Minnesota)
Abstract
We will be discussing limit behaviour of sums along subsequences of a given sequence of non-correlated random variables. Some results are applied to the classical trigonometric system in the Berkes model. /notices/events/abstracts/stochastic-analysis/ht06/bobkov.shtml    
Thu, 19 Jan 2006

14:00 - 15:00
Comlab

High frequency scattering by convex polygons

Dr Stephen Langdon
(University of Reading)
Abstract

Standard finite element or boundary element methods for high frequency scattering problems, with piecewise polynomial approximation spaces, suffer from the limitation that the number of degrees of freedom required to achieve a prescribed level of accuracy grows at least linearly with respect to the frequency. Here we present a new boundary element method for which, by including in the approximation space the products of plane wave basis functions with piecewise polynomials supported on a graded mesh, we can demonstrate a computational cost that grows only logarithmically with respect to the frequency.