N-covering stationary points and constrained variational problems
Abstract
In this talk we show how degree N maps of the form $u_{N}(z) = \frac{z^{N}}{|z|^{N-1}}$ arise naturally as stationary points of functionals like the Dirichlet energy. We go on to show that the $u_{N}$ are minimizers of related variational problems, including one whose associated Euler-Lagrange equation bears a striking resemblance to a system studied by N. Meyers in the 60s, and another where the constraint $\det \nabla u = 1$ a.e. plays a prominent role.