Thu, 24 Nov 2005

14:00 - 15:00
Comlab

Instability & transition of steady and pulsatile flow in stenotic/constricted pipes

Dr Spencer Sherwin
(Imperial College London)
Abstract

Through the advent of enhanced medical imaging computational modelling can now be applied to anatomically correct arterial geometries. However many flow feautures under physiological and pathological flow paraemeters, even in idealised problems, are relatively poorly understood. A commonly studied idealisation of an arterial blockage or stenosis, potentially generated by atherosclerosis, is a sinusoidally varying constricted tube. Although most physiological flow conditions are typically laminar, in this configuration turbulent flow states can arise due to the local increase in sectional Reynolds number. To examine the onset of turbulence in this geometry, under a simple non-reversing pulsatile flows, we have applied Floquet stability analysis and direct
numerical simulation.
As illustrated in the above figure, a period-doubling absolute instability mode associated with alternating tilting of the vortex rings that are ejected out of the stenosis/constriction during each pulse. This primary instability occurs for relatively large reduced velocities associated with long pulse periods (or low Womersley numbers). For lower reduced velocities the primary instability typically manifests itself as azimuthal waves (Widnall instability modes) of low wavenumber that grow on each vortex ring. We have also observed the shear layer of the steady axisymmetric flow is convectively unstable at still shorter temporal periods.
In this presentation we shall outline the challenges of modelling vascular flow problems with a particular focus on idealised stenotic flow. After briefly outlining the numerical analysis methods we shall discuss the flow investigations outlined above and their relation to more classical vortex instabilities.

Wed, 23 Nov 2005
17:00

CANCELLED.

Dr Joseph Chuang
(Bristol)
Tue, 22 Nov 2005
17:00
SR2

tba

tba
Tue, 22 Nov 2005
17:00
L3

tba

Line Baribau
(Laval and Oxford)
Tue, 22 Nov 2005
16:30
Dobson Room, AOPP

Manifolds and heteroclinic connections in the Lorenz system

Dr Hinke Osinga
(University of Bristol)
Abstract
The Lorenz system still fascinates many people because of the simplicity of the equations that generate such complicated dynamics on the famous butterfly attractor. The organisation of the dynamics in the Lorenz system and also how the dynamics depends on the system parameters has long been an object of study. This talk addresses the role of the global stable and unstable manifolds in organising the dynamics. More precisely, for the standard system parameters, the origin has a two-dimensional stable manifold and the other two equilibria each have a two-dimensional unstable manifold. The intersections of these two manifolds in the three-dimensional phase space form heteroclinic connections from the nontrivial equilibria to the origin. A parameter-dependent study of these manifolds clarifies not only the creation of these heteroclinic connections, but also helps to explain the dynamics on the attractor by means of symbolic coding in a parameter-dependent way.

This is joint work with Eusebius Doedel (Concordia University, Montreal) and Bernd Krauskopf (University of Bristol).
Mon, 21 Nov 2005
15:45
DH 3rd floor SR

Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients

Dr M Tretyakov
(University of Leicester)
Abstract

Stochastic differential equations (SDEs) with nonglobally Lipschitz coefficients

possessing unique solutions make up a very important class in applications. For

instance, Langevin-type equations and gradient systems with noise belong to this

class. At the same time, most numerical methods for SDEs are derived under the

global Lipschitz condition. If this condition is violated, the behaviour of many

standard numerical methods in the whole space can lead to incorrect conclusions.

This situation is very alarming since we are forced to refuse many effective

methods and/or to resort to some comparatively complicated numerical procedures.

We propose a new concept which allows us to apply any numerical method of weak

approximation to a very broad class of SDEs with nonglobally Lipschitz

coefficients. Following this concept, we discard the approximate trajectories

which leave a sufficiently large sphere. We prove that accuracy of any method of

weak order p is estimated by $\varepsilon+O(h^{p})$, where $\varepsilon$ can be

made arbitrarily small with increasing the radius of the sphere. The results

obtained are supported by numerical experiments. The concept of rejecting

exploding trajectories is applied to computing averages with respect to the

invariant law for Langevin-type equations. This approach to computing ergodic

limits does not require from numerical methods to be ergodic and even convergent

in the nonglobal Lipschitz case. The talk is based on joint papers with G.N.

Milstein.

Mon, 21 Nov 2005
14:15
DH 3rd floor SR

Global stochastic flows without global Lipschitz conditions

Prof Shizan Fang
(Université de Bourgogne)
Abstract

A classical result due to Kunita says that if the coefficients are global

Lipschitzian, then the s.d.e defines a global flow of homeomorphisms. In this

talk, we shall prove that under suitable growth on Lipschitz constants, the sde

define still a global flow.

Mon, 21 Nov 2005
12:00
L3

Generalised geometries and supergravity

Dan Waldram
(Imperial)
Abstract

I aim to give some review of how generalised geometries provide a natural

framework for describing supersymmetric string backgrounds. In particular I

will focus on a rewriting of type II supergravity in terms of generalised

structures. Hitchin functions appear naturally along with generalised

extensions of the Gukov-Vafa-Witten superpotential.

Thu, 17 Nov 2005
16:30
DH Common Room

Optimising Routes in Ad-Hoc TDD-CDMA Communication Systems

Steve McLaughlin
(University of Edinburgh)
Abstract

In this talk, a network topology is presented that allows both peer-to-peer and non-local traffic in a cellular based TDD-CDMA system known as opportunity driven multiple access (ODMA). The key to offering appropriate performance of peer-to-peer communication in such a system relies on the use of a routing algorithm which minimises interference. This talk will discuss the constraints and limitations on the capacity of such a system using a variety of routing techniques. A congestion based routing algorithm will be presented that attempts to minimize the overall power of the system as well as providing a measure of feasibility. This technique provides the lowest required transmit power in all circumstances, and the highest capacity in nearly all cases studied. All of the routing algorithms considered allocate TDD time slots on a first come first served basis according to a set of pre-defined rules. This fact is utilised to enable the development of a combined routing and resource allocation algorithm for TDD-CDMA relaying. A novel method of time slot allocation according to relaying requirements is then developed.

Two measures of assessing congestion are presented based on matrix norms. One is suitable for a current interior point solution, the other is more elegant but is not currently suitable for efficient minimisation and thus practical implementation.