Tue, 07 Mar 2023

14:00 - 15:00
Lecture Room 3

Dehomogenization: a new technique for multi-scale topology optimization

Alex Ferrer
Abstract

The recent advancements in additive manufacturing have enabled the creation of lattice structures with intricate small-scale details. This has led to the need for new techniques in the field of topology optimization that can handle a vast number of design variables. Despite the efforts to develop multi-scale topology optimization techniques, their high computational cost has limited their application. To overcome this challenge, a new technique called dehomogenization has shown promising results in terms of performance and computational efficiency for optimizing compliance problems.

In this talk, we extend the application of the dehomogenization method to stress minimization problems, which are crucial in structural design. The method involves homogenizing the macroscopic response of a proposed family of microstructures. Next, the macroscopic structure is optimized using gradient-based methods while orienting the cells according to the principal stress components. The final step involves dehomogenization of the structure. The proposed methodology also considers singularities in the orientation field by incorporating singular functions in the dehomogenization process. The validity of the methodology is demonstrated through several numerical examples.

Tue, 07 Mar 2023
12:30
C3

Mathematical modelling of liquid lithium inside a tokamak fusion reactor

Oliver Bond
Abstract

We model a tokamak fusion reaction, combining Maxwell's equations with the Navier-Stokes equations, the heat equation and the Seebeck effect giving a model of thermoelectric magnetohydrodynamics (TEMHD). At leading order, we showed that the free surface must be flat, that the pressure is constant, and that the temperature decouples from the governing equations relating the fluid velocity and magnetic field. We also find that the fluid flow is driven entirely by the temperature gradient normal to the free surface. Using singular perturbation methods we obtained velocity profiles which exhibit so-called Hartmann layers and thicker side layers. The role of the aspect ratio has been seldom considered in classical MHD duct flow literature as a varying parameter. Here, we show it's importance and derive a relationship between the aspect ratio and Hartmann number that maximises flow rate of fluid down the duct.

Mon, 06 Mar 2023
16:30
L4

Global stability of Kaluza-Klein spacetimes

Zoe Wyatt
(King's College London)
Abstract

Spacetimes formed from the cartesian product of Minkowski space and a flat torus play an important role as toy models for theories of supergravity and string theory. In this talk I will discuss an upcoming work with Huneau and Stingo showing the nonlinear stability of such a Kaluza-Klein spacetime. The result is also connected to a claim of Witten.

Mon, 06 Mar 2023
16:00

TBD

Mon, 06 Mar 2023
15:30
L4

Homeomorphisms of surfaces: a new approach

Richard Webb
(University of Manchester)
Abstract

Despite their straightforward definition, the homeomorphism groups of surfaces are far from straightforward. Basic algebraic and dynamical problems are wide open for these groups, which is a far cry from the closely related and much better understood mapping class groups of surfaces. With Jonathan Bowden and Sebastian Hensel, we introduced the fine curve graph as a tool to study homeomorphism groups. Like its mapping class group counterpart, it is Gromov hyperbolic, and can shed light on algebraic properties such as scl, via geometric group theoretic techniques. This brings us to the enticing question of how much of Thurston's theory (e.g. Nielsen--Thurston classification, invariant foliations, etc.) for mapping class groups carries over to the homeomorphism groups. We will describe new phenomena which are not encountered in the mapping class group setting, and meet some new connections with topological dynamics, which is joint work with Bowden, Hensel, Kathryn Mann and Emmanuel Militon. I will survey what's known, describe some of the new and interesting problems that arise with this theory, and give an idea of what's next.

 

Mon, 06 Mar 2023

15:30 - 16:30
L1

Brownian excursions, conformal loop ensembles and critical Liouville quantum gravity

Ellen Powell
Abstract

It was recently shown by Aidekon and Da Silva how to construct a growth fragmentation process from a planar Brownian excursion. I will explain how this same growth fragmentation process arises in another setting: when one decorates a certain “critical Liouville quantum gravity random surface” with a conformal loop ensemble of parameter 4. This talk is based on joint work with Juhan Aru, Nina Holden and Xin Sun. 
 

Mon, 06 Mar 2023
14:15
L4

Phase transitions with Allen-Cahn mean curvature bounded in $L^p$.

Shengwen Wang
(Queen Mary University)
Abstract

We consider the varifolds associated to phase transitions whose first variation of Allen-Cahn energy is $L^p$ integrable with respect to the energy measure. We can see that the Dirichlet and potential part of the energy are almost equidistributed. After passing to the phase field limit, one can obtain an integer rectifiable varifold with bounded $L^p$ mean curvature. This is joint work with Huy Nguyen.

Mon, 06 Mar 2023

14:00 - 15:00
L6

A Matrix-Mimetic Tensor Algebra for Optimal Representations of Multiway Data

Elizabeth Newman
(Emory University )
Abstract

The data revolution has changed the landscape of computational mathematics and has increased the demand for new numerical linear algebra tools to handle the vast amount of data. One crucial task is data compression to capture the inherent structure of data efficiently. Tensor-based approaches have gained significant traction in this setting by exploiting multilinear relationships in multiway data. In this talk, we will describe a matrix-mimetic tensor algebra that offers provably optimal compressed representations of high-dimensional data. We will compare this tensor-algebraic approach to other popular tensor decomposition techniques and show that our approach offers both theoretical and numerical advantages.

Mon, 06 Mar 2023
13:00
L1

Bounds on quantum evolution complexity via lattice cryptography

Marine De Clerck
(Cambridge)
Abstract

I will present results from arXiv:2202.13924, where we studied the difference between integrable and chaotic motion in quantum theory as manifested by the complexity of the corresponding evolution operators. The notion of complexity of interest to us will be Nielsen’s complexity applied to the time-dependent evolution operator of the quantum systems. I will review Nielsen’s complexity, discuss the difficulties associated with this definition and introduce a simplified approach which appears to retain non-trivial information about the integrable properties of the dynamical systems.

Mon, 06 Mar 2023
11:15
L6

Modular Hecke algebras and Galois representations

(University of Rennes)
Abstract

Let F be a p-adic local field and let G be a connected split reductive group over F. Let H be the pro-p Iwahori-Hecke algebra of the p-adic group G(F), with coefficients in an algebraically closed field k of characteristic p. The module theory over H (or a certain derived version thereof) is of considerable interest in the so-called mod p local Langlands program for G(F), whose aim is to relate the smooth modular representation theory of G(F) to modular representations of the absolute Galois group of F. In this talk, we explain a possible construction of a certain moduli space for those Galois representations into the Langlands dual group of G over k which are semisimple. We then relate this space to the geometry of H. This is a work in progress with Cédric Pépin.

Fri, 03 Mar 2023

16:00 - 17:00
Lecture Room 6

Topological Optimization with Big Steps

Dmitry Morozov
Abstract

Using persistent homology to guide optimization has emerged as a novel application of topological data analysis. Existing methods treat persistence calculation as a black box and backpropagate gradients only onto the simplices involved in particular pairs. We show how the cycles and chains used in the persistence calculation can be used to prescribe gradients to larger subsets of the domain. In particular, we show that in a special case, which serves as a building block for general losses, the problem can be solved exactly in linear time. We present empirical experiments that show the practical benefits of our algorithm: the number of steps required for the optimization is reduced by an order of magnitude. (Joint work with Arnur Nigmetov.)

Fri, 03 Mar 2023
16:00
C4

Integrability I

Adam Kmec
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Fri, 03 Mar 2023
16:00
L1

What makes a good academic discussion? A panel event

Chair: Ian Hewitt (Associate HoD (People)) Panel: James Sparks (HoD); Helen Byrne (winner of MPLS Outstanding Supervisor Awards for 2022); Ali Goodall (Head of Faculty Services and HR); and Matija Tapuskovic (EPSRC Postdoctoral Research Fellow)
Abstract

Chair: Ian Hewitt (Associate HoD (People))

Panel:
James Sparks (Head of Department)
Helen Byrne (winner of MPLS Outstanding Supervisor Awards for 2022)
Ali Goodall (Head of Faculty Services and HR)
Matija Tapuskovic (EPSRC Postdoctoral Research Fellow and JRF at Corpus Christi)

Scientific discussions with colleagues, at conferences and seminars, during supervisions and collaborations, are a crucial part of our research process. How can we ensure our academic discussions are fruitful, respectful, and a positive experience for everyone involved? What factors and power dynamics can impact our conversations? How can we make sure everyone’s voice is heard and respected? This panel discussion will probe these questions and encourage us all to reflect on how we approach our academic discussions.

Fri, 03 Mar 2023

14:00 - 15:00
Virtual

An agent-based model of the tumour microenvironment

Dr Cicely Macnamara
(School of Mathematics and Statistics University of Glasgow)
Abstract

The term cancer covers a multitude of bodily diseases, broadly categorised by having cells which do not behave normally. Cancer cells can arise from any type of cell in the body; cancers can grow in or around any tissue or organ making the disease highly complex. My research is focused on understanding the specific mechanisms that occur in the tumour microenvironment via mathematical and computational modelling. In this talk I shall present a 3D individual-based force-based model for tumour growth and development in which we simulate the behaviour of, and spatio-temporal interactions between, cells, extracellular matrix fibres and blood vessels. Each agent is fully realised, for example, cells are described as viscoelastic sphere with radius and centre given within the off-lattice model. Interactions are primarily governed by mechanical forces between elements. However, as well as he mechanical interactions we also consider chemical interactions, by coupling the code to a finite element solver to model the diffusion of oxygen from blood vessels to cells, as well as intercellular aspects such as cell phenotypes. 

Fri, 03 Mar 2023

12:00 - 13:00
N3.12

Automorphisms of Quantum Toroidal Algebras and an Action of The Extended Double Affine Braid Group

Duncan Laurie
(University of Oxford)
Abstract

Quantum toroidal algebras $U_{q}(\mathfrak{g}_{\mathrm{tor}})$ are certain Drinfeld quantum affinizations of quantum groups associated to affine Lie algebras, and can therefore be thought of as `double affine quantum groups'.

In particular, they contain (and are generated by) a horizontal and vertical copy of the affine quantum group. 

Utilising an extended double affine braid group action, Miki obtained in type $A$ an automorphism of $U_{q}(\mathfrak{g}_{\mathrm{tor}})$ which exchanges these subalgebras. This has since played a crucial role in the investigation of its structure and representation theory.

In this talk I shall present my recent work -- which extends the braid group action to all types and generalises Miki's automorphism to the ADE case -- as well as potential directions for future work in this area.

Thu, 02 Mar 2023
16:00
L4

Explicit (and improved) results on the structure of sumsets

Aled Walker
(King's College London)
Abstract

Given a finite set A of integer lattice points in d dimensions, let NA denote the N-fold iterated sumset (i.e. the set comprising all sums of N elements from A). In 1992 Khovanskii observed that there is a fixed polynomial P(N), depending on A, such that the size of the sumset NA equals P(N) exactly (once N is sufficiently large, that is). In addition to this 'size stability', there is a related 'structural stability' property for the sumset NA, which Granville and Shakan recently showed also holds for sufficiently large N. But what does 'sufficiently large' mean in practice? In this talk I will discuss some perspectives on these questions, and explain joint work with Granville and Shakan which proves the first explicit bounds for all sets A. I will also discuss current work with Granville, which gives a tight bound 'up to logarithmic factors' for one of these properties. 

 

Thu, 02 Mar 2023

14:00 - 15:00
Lecture Room 3

Finite element computations for modelling skeletal joints

Jonathan Whiteley
(Oxford University)
Abstract

Skeletal joints are often modelled as two adjacent layers of poroviscoelastic cartilage that are permitted to slide past each other.  The talk will begin by outlining a mathematical model that may be used, focusing on two unusual features of the model: (i) the solid component of the poroviscoelastic body has a charged surface that ionises the fluid within the pores, generating a swelling pressure; and (ii) appropriate conditions are required at the interface between the two adjacent layers of cartilage.  The remainder of the talk will then address various theoretical and practical issues in computing a finite element solution of the governing equations.

 

Thu, 02 Mar 2023

12:00 - 13:00
L4

Intrinsic models on Riemannian manifolds with bounded curvature

Hansol Park
(Simon Fraser University)
Abstract

We investigate the long-time behaviour of solutions to a nonlocal partial differential equation on smooth Riemannian manifolds of bounded sectional curvature. The equation models self-collective behaviour with intrinsic interactions that are modeled by an interaction potential. Without the diffusion term, we consider attractive interaction potentials and establish sufficient conditions for a consensus state to form asymptotically. In addition, we quantify the approach to consensus, by deriving a convergence rate for the diameter of the solution’s support. With the diffusion term, the attractive interaction and the diffusion compete. We provide the conditions of the attractive interaction for each part to win.

Thu, 02 Mar 2023

12:00 - 13:00
L1

The Plankton Hydrodynamic Playbook

Christophe Eloy
(IRPHE Marseille)
Further Information

 

Christophe is Professor of Fluid Mechanics at Centrale Marseille. His research activity is carried out at the IRPHE institute in Marseille.

'His research addresses various fundamental problems of fluid and solid mechanics, including fluid-structure interactions, hydrodynamic instabilities, animal locomotion, aeroelasticity, rotating flows, and plant biomechanics. It generally involves a combination of analytical modeling, experiments, and numerical work.' (Taken from his website here: https://www.irphe.fr/~eloy/).'

 

 

Abstract

By definition, planktonic organisms drift with the water flows. But these millimetric organisms are not necessarily passive; many can swim and can sense the surrounding flow through mechanosensory hairs. But how useful can be flow sensing in a turbulent environment? To address this question, we show two examples of smart planktonic behavior: (1) we develop a model where plantkters choose a swimming direction as a function of the velocity gradient to "surf on turbulence" and move efficiently upwards; (2) we show how a plankter measuring the velocity gradient may track the position of a swimming target from its hydrodynamic signature. 

Ernst Haeckel, Kunstformen der Natur (1904), Copepoda 

 

Wed, 01 Mar 2023
16:00
L6

Algorithms and 3-manifolds

Adele Jackson
(University of Oxford)
Abstract

Given a mathematical object, what can you compute about it? In some settings, you cannot say very much. Given an arbitrary group presentation, for example, there is no procedure to decide whether the group is trivial. In 3-manifolds, however, algorithms are a fruitful and active area of study (and some of them are even implementable!). One of the main tools in this area is normal surface theory, which allows us to describe interesting surfaces in a 3-manifold with respect to an arbitrary triangulation. I will discuss some results in this area, particularly around Seifert fibered spaces.

Wed, 01 Mar 2023

13:00 - 14:00
N3.12

Mathematrix: Targets vs Quotas

Abstract

We will discuss the pros and cons of targets vs quotas in increasing diversity in Mathematics.

Tue, 28 Feb 2023
16:00
C3

Some algebraic aspects of minimal dynamics on the Cantor set

Maryram Hosseini
(Queen Mary, University of London)
Abstract

By Jewett-Krieger theorems minimal dynamical systems on the Cantor set are topological analogous of ergodic systems on probability Lebesgue spaces. In this analogy and to study a Cantor minimal system, indicator functions of clopen sets (as continuous integer or real valued functions) are considered while they are mod out by the subgroup of all co-boundary functions. That is how dimension group which is an operator algebraic object appears in dynamical systems. In this talk, I try to explain a bit more about dimension groups from dynamical point of view and how it relates to topological factoring and spectrum of Cantor minimal systems.

Tue, 28 Feb 2023
15:00
L3

Computing bounded cohomology of discrete groups

Francesco Fournier-Facio
Abstract

Bounded cohomology is a functional-analytic analogue of ordinary cohomology that has become a fundamental tool in many fields, from rigidity theory to the geometry of manifolds. However it is infamously hard of compute, and the lack of very basic examples makes the overall picture still hard to grasp. I will report on recent progress in this direction, and draw attention to some natural questions that remain open.

Tue, 28 Feb 2023

14:00 - 15:00
L4

Some combinatorial applications of guided random processes

Peter Keevash
(Oxford University)
Abstract

Random greedy algorithms became ubiquitous in Combinatorics after Rödl's nibble (semi-random method), which was repeatedly refined for various applications, such as iterative graph colouring algorithms (Molloy-Reed) and lower bounds for the Ramsey number $R(3,t)$ via the triangle-free process (Bohman-Keevash / Fiz Pontiveros-Griffiths-Morris). More recently, when combined with absorption, they have played a key role in many existence and approximate counting results for combinatorial structures, following a paradigm established by my proofs of the Existence of Designs and Wilson's Conjecture on the number of Steiner Triple Systems. Here absorption (converting approximate solutions to exact solutions) is generally the most challenging task, which has spurred the development of many new ideas, including my Randomised Algebraic Construction method, the Kühn-Osthus Iterative Absorption method and Montgomery's Addition Structures (for attacking the Ryser-Brualdi-Stein Conjecture). The design and analysis of a suitable guiding mechanism for the random process can also come with major challenges, such as in the recent proof of Erdős' Conjecture on Steiner Triple Systems of high girth (Kwan-Sah-Sawhney-Simkin). This talk will survey some of this background and also mention some recent results on the Queens Problem (Bowtell-Keevash / Luria-Simkin / Simkin) and the Existence of Subspace Designs (Keevash-Sah-Sawhney). I may also mention recent solutions of the Talagrand / Kahn-Kalai Threshold Conjectures (Frankston-Kahn-Narayanan-Park / Park-Pham) and thresholds for Steiner Triple Systems / Latin Squares (Keevash / Jain-Pham), where the key to my proof is constructing a suitable spread measure via a guided random process.