Fri, 12 Nov 2021

15:00 - 16:00
Virtual

Stable ranks for data analysis

Professor Martina Scolamiero
(KTH Royal Institute of Technology)
Abstract

Hierarchical stabilisation, allows us to define topological invariants for data starting from metrics to compare persistence modules. In this talk I will highlight the variety of metrics that can be constructed in an axiomatic way, via so called Noise Systems. The focus will then be on one invariant obtained through hierarchical stabilisation, the Stable Rank, which the TDA group at KTH has been studying in the last years. In particular I will address the problem of using this invariant on noisy and heterogeneous data. Lastly, I will illustrate the use of stable ranks on real data within a project on microglia morphology description, in collaboration with S. Siegert’s group, K. Hess and L. Kanari. 

Fri, 12 Nov 2021

14:00 - 15:00
L3

Tools and approaches to build and analyze multiscale computational models in biology -TB as a case study

Prof Denise Kirschner
(Department of Microbiology and Immunology University of Michigan Medical Schoo)
Abstract

In this talk, I will give an overview of our multi-scale models that we have developed to study a number of aspects of the immune response to infection.  Scales that we explore range from molecular to the whole-host scale.  We are also able to study virtual populations and perform simulated clinical trials. We apply these approaches to study Tuberculosis, the disease caused by inhalation of the bacteria, Mycobacterium tuberculosis. It has infected 2 billion people in the world today, and kills 1-2 million people each year, even more than COVID-19. Our goal is to aid in understanding infection dynamics, treatment and vaccines to improve outcomes for this global health burden. I will discuss our frameworks for multi-scale modeling, and the analysis tools and statistical approaches that we have honed to better understand different outcomes at different scales.

Fri, 12 Nov 2021

14:00 - 15:00
C3

sl_2-triples in classical Lie algebras over fields of positive characteristic

Rachel Pengelly
(University of Birmingham)
Abstract

Let $K$ be an algebraically closed field. Given three elements of some Lie algebra over $K$, we say that these elements form an $sl_2$-triple if they generate a subalgebra which is a homomorphic image of $sl_2(K).$ In characteristic 0, the Jacobson-Morozov theorem provides a bijection between the orbits of nilpotent elements of the Lie algebra and the orbits of $sl_2$-triples. In this talk I will discuss the progress made in extending this result to fields of characteristic $p$. In particular, I will focus on the results in classical Lie algebras, which can be found as subsets of $gl_n(K)$.

Thu, 11 Nov 2021

16:00 - 17:00
L3

Online Stochastic Optimization of SDEs

JUSTIN SIRIGNANO
(University of Oxford)
Abstract

We develop a new online algorithm for optimizing over the stationary distribution of stochastic differential equation (SDE) models. The algorithm optimizes over the parameters in the multi-dimensional SDE model in order to minimize the distance between the model's stationary distribution and the target statistics. We rigorously prove convergence for linear SDE models and present numerical results for nonlinear examples. The proof requires analysis of the fluctuations of the parameter evolution around the unbiased descent direction under the stationary distribution. Bounds on the fluctuations are challenging to obtain due to the online nature of the algorithm (e.g., the stationary distribution will continuously change as the parameters change). We prove bounds on a new class of Poisson partial differential equations, which are then used to analyze the parameter fluctuations in the algorithm. This presentation is based upon research with Ziheng Wang.
 

Thu, 11 Nov 2021

16:00 - 17:00
L5

Approximation of mean curvature flow with generic singularities by smooth flows with surgery

Joshua Daniels-Holgate
(University of Warwick)
Abstract

We construct smooth flows with surgery that approximate weak mean curvature flows with only spherical and neck-pinch singularities. This is achieved by combining the recent work of Choi-Haslhofer-Hershkovits, and Choi-Haslhofer-Hershkovits-White, establishing canonical neighbourhoods of such singularities, with suitable barriers to flows with surgery. A limiting argument is then used to control these approximating flows. We demonstrate an application of this surgery flow by improving the entropy bound on the low-entropy Schoenflies conjecture.

Thu, 11 Nov 2021
14:00
Virtual

A Fast, Stable QR Algorithm for the Diagonalization of Colleague Matrices

Vladimir Rokhlin
(Yale University)
Abstract

 

The roots of a function represented by its Chebyshev expansion are known to be the eigenvalues of the so-called colleague matrix, which is a Hessenberg matrix that is the sum of a symmetric tridiagonal matrix and a rank 1 perturbation. The rootfinding problem is thus reformulated as an eigenproblem, making the computation of the eigenvalues of such matrices a subject of significant practical interest. To obtain the roots with the maximum possible accuracy, the eigensolver used must posess a somewhat subtle form of stability.

In this talk, I will discuss a recently constructed algorithm for the diagonalization of colleague matrices, satisfying the relevant stability requirements.  The scheme has CPU time requirements proportional to n^2, with n the dimensionality of the problem; the storage requirements are proportional to n. Furthermore, the actual CPU times (and storage requirements) of the procedure are quite acceptable, making it an approach of choice even for small-scale problems. I will illustrate the performance of the algorithm with several numerical examples.

--

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

 

Thu, 11 Nov 2021
14:00
L3

Higher Form Symmetries: Part 2

Dewi Gould
((Oxford University))
Further Information

Junior strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research areas. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 11 Nov 2021

12:00 - 13:00
L3

(Timms) Simplified battery models via homogenisation

Travis Thompson & Robert Timms
(University of Oxford)
Further Information

Travis Thompson and Robert Timms are both OCIAM members. Travis is a post-doc working with Professor Alain Goriely in the Mathematics & Mechanics of Brain Trauma group. Robert Timms is a post-doc whose research focuses on the Mathematical Modelling of Batteries.

Abstract

 Mathematics for the mind: network dynamical systems for neurodegenerative disease pathology

Travis Thompson

Can mathematics understand neurodegenerative diseases?  The modern medical perspective on neurological diseases has evolved, slowly, since the 20th century but recent breakthroughs in medical imaging have quickly transformed medicine into a quantitative science.  Today, mathematical modeling and scientific computing allow us to go farther than observation alone.  With the help of  computing, experimental and data-informed mathematical models are leading to new clinical insights into how neurodegenerative diseases, such as Alzheimer's disease, may develop in the human brain.  In this talk, I will overview my work in the construction, analysis and solution of data and clinically-driven mathematical models related to AD pathology.  We will see that mathematical modeling and scientific computing are indeed indispensible for cultivating a data-informed understanding of the brain, AD and for developing potential treatments.

 

___________________________________________________________________________________________________

Simplified battery models via homogenisation  

Robert Timms

Lithium-ion batteries (LIBs) are one of the most popular forms of energy storage for many modern devices, with applications ranging from portable electronics to electric vehicles. Improving both the performance and lifetime of LIBs by design changes that increase capacity, reduce losses and delay degradation effects is a key engineering challenge. Mathematical modelling is an invaluable tool for tackling this challenge: accurate and efficient models play a key role in the design, management, and safe operation of batteries. Models of batteries span many length scales, ranging from atomistic models that may be used to predict the rate of diffusion of lithium within the active material particles that make up the electrodes, right through to models that describe the behaviour of the thousands of cells that make up a battery pack in an electric vehicle. Homogenisation can be used to “bridge the gap” between these disparate length scales, and allows us to develop computationally efficient models suitable for optimising cell design.

Wed, 10 Nov 2021

16:00 - 17:00
C5

Orbifolds - more than just spaces

Christoph Weis
(University of Oxford)
Abstract

Orbifolds are a generalisation of manifolds which allow group actions to enter the picture. The most basic examples of orbifolds are quotients of manifolds by (non-free) finite group actions.
I will give an introduction to orbifolds, recalling a number of philosophically different but mathematically equivalent definitions. For starters, I will try to convince you that "a space locally modelled on a quotient of R^n by a finite group" is misleading. I will draw many pictures of orbifolds, make the connection to complexes of groups, and explain the definition of a map of orbifolds. In the process, I hope to demystify the definition of the orbifold fundamental group, the orbifold Euler characteristic and orbifold cohomology.

Wed, 10 Nov 2021

14:00 - 15:00
Virtual

3d N=4 theories on an elliptic curve

Daniel Zhang
(Cambridge DAMTP)
Abstract

I will discuss 3d N=4 supersymmetric gauge theories compactified on an elliptic curve, and how this set-up physically realises recent mathematical results on the equivariant elliptic cohomology of symplectic resolutions. In particular, I will describe the Berry connection for supersymmetric ground states, and in doing so connect the elliptic cohomology of the Higgs branch with spectral data of doubly periodic monopoles. I will show that boundary conditions, via a consideration of boundary ’t Hooft anomalies, naturally represent elliptic cohomology classes. Finally, if I have time, I will discuss mirror symmetry/symplectic duality in our framework, and physically recover concepts in elliptic cohomology such as the mother function, and the elliptic stable envelopes of Aganagic-Okounkov.


This talk will be based on https://arxiv.org/abs/2109.10907 with Mathew Bullimore.

Wed, 10 Nov 2021

10:00 - 12:00

Finite Element Exterior Calculus - Part 3

Kaibu Hu
(Oxford University)
Further Information

Location: VC Room

Structure: 4 x 2 hr Lectures

Part 1 - 27th October

Part 2 - 3rd November

Part 3 - 10th November

Part 4 - 17th November

Abstract

Many PDE models encode fundamental physical, geometric and topological structures. These structures may be lost in discretisations, and preserving them on the discrete level is crucial for the stability and efficiency of numerical methods. The finite element exterior calculus (FEEC) is a framework for constructing and analysing structure-preserving numerical methods for PDEs with ideas from topology, homological algebra and the Hodge theory. 

 

In this seminar, we present the theory and applications of FEEC. This includes analytic results (Hodge decomposition, regular potentials, compactness etc.), Hodge-Laplacian problems and their structure-preserving finite element discretisation, and applications in electromagnetism, fluid and solid mechanics. Knowledge on geometry and topology is not required as prerequisites.

 

References:

 

1. Arnold, D.N.: Finite Element Exterior Calculus. SIAM (2018) 

2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1 (2006) 

3. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bulletin of the American Mathematical Society 47(2), 281–354 (2010) 

4. Arnold, D.N., Hu, K.: Complexes from complexes. Foundations of Computational Mathematics (2021)

Tue, 09 Nov 2021

16:00 - 17:00
C5

Equivariant higher twists over SU(n) and tori

Ulrich Pennig
(University of Cardiff)
Abstract

Twisted K-theory is an enrichment of topological K-theory that allows local coefficient systems called twists. For spaces and twists equipped with an action by a group, equivariant twisted K-theory provides an even finer invariant. Equivariant twists over Lie groups gained increasing importance in the subject due to a result by Freed, Hopkins and Teleman that relates the corresponding K-groups to the Verlinde ring of the associated loop group. From the point of view of homotopy theory only a small subgroup of all possible twists is considered in classical treatments. In this talk I will discuss a construction that is joint work with David Evans and produces interesting examples of non-classical twists over the Lie groups SU(n) and over tori constructed from exponential functors. They arise naturally as Fell bundles and are equivariant with respect to the conjugation action of the group on itself. For the determinant functor our construction reproduces the basic gerbe over SU(n) used by Freed, Hopkins and Teleman.

Tue, 09 Nov 2021

15:30 - 16:30
L6

Hermitian matrix model with non-trivial covariance and relations to quantum field theory

Alexander Hock
(University of Oxford)
Abstract

Hermitian matrix models with non-trivial covariance will be introduced. The Kontsevich Model is the prime example, which was used to prove Witten's conjecture about the generating function of intersection numbers of the moduli space $\overline{\mathcal{M}}_{g,n}$. However, we will discuss these models in a different direction, namely as a quantum field theory. As a formal matrix model,  the correlation functions of these models have a unique combinatorial/perturbative interpretation in the sense of Feynman diagrams. In particular, the additional structure (in comparison to ordinary quantum field theories) gives the possibility to compute exact expressions, which are resummations of infinitely many Feynman diagrams. For the easiest topologies, these exact expressions (given by implicitly defined functions) will be presented and discussed. If time remains, higher topologies are discussed by a connection to Topological Recursion.

Tue, 09 Nov 2021
14:30
L3

TBA

Fede Danieli
(University of Oxford)
Abstract

TBA

Tue, 09 Nov 2021
14:00
L3

TBA

Guiseppe Ughi
(University of Oxford)
Abstract

TBA

Tue, 09 Nov 2021
14:00
Virtual

Classical field theory on quantum principal bundles

Branimir Cacic
(University of New Brunswick Canada)
Further Information

Please note unusual time.

Abstract

In his very first note on noncommutative differential geometry, Connes
showed that the position and momentum operators on the line could be used to
construct constant curvature connections over an irrational noncommutative

2-torus $\mathcal{A}_\theta$. When $\theta$ is a quadratic irrationality,
this yields, in particular, constant curvature connections on non-trivial
noncommutative line bundles---is there an underlying monopole on some
non-trivial noncommutative principal $U(1)$-bundle? We use this case study
to illustrate how approaches to quantum principal bundles introduced by
Brzeziński–Majid and Đurđević, respectively, can be fruitfully synthesized
to reframe classical gauge theory on quantum principal bundles in terms of
synthesis of total spaces (as noncommutative manifolds) from vertical and
horizontal geometric data.

Tue, 09 Nov 2021
14:00
Virtual

TBA

Matija Bucić
(Princeton/IAS)
Tue, 09 Nov 2021
14:00
L5

TBA

Marek Kaluba
(Karlsruher Institute für Technologie)
Abstract

In this leisure talk I will show how a sum of squares decomposition problem can be transformed to a problem of semi-definite optimization. Then the practicality of such reformulations will be discussed, illustrated by an explicit example of Artin's solutions to Hilberts 17th problem. Finally I will show how a numerical solution could be turned into a mathematically certified one, using the order structure on the cone of sums of squares.
The talk requires no pre-requisite knowledge of neither optimization or programming and only undergraduate mathematics.

Tue, 09 Nov 2021

14:00 - 15:00
Virtual

Information-theoretic methods for food supply network identification in food-borne disease outbreaks

Abigail Horn
(University of Southern California)
Abstract

In the event of food-borne disease outbreaks, conventional epidemiological approaches to identify the causative food product are time-intensive and often inconclusive. Data-driven tools could help to reduce the number of products under suspicion by efficiently generating food-source hypotheses. We frame the problem of generating hypotheses about the food-source as one of identifying the source network from a set of food supply networks (e.g. vegetables, eggs) that most likely gave rise to the illness outbreak distribution over consumers at the terminal stage of the supply network. We introduce an information-theoretic measure that quantifies the degree to which an outbreak distribution can be explained by a supply network’s structure and allows comparison across networks. The method leverages a previously-developed food-borne contamination diffusion model and probability distribution for the source location in the supply chain, quantifying the amount of information in the probability distribution produced by a particular network-outbreak combination. We illustrate the method using supply network models from Germany and demonstrate its application potential for outbreak investigations through simulated outbreak scenarios and a retrospective analysis of a real-world outbreak.

Mon, 08 Nov 2021

16:00 - 17:00
L3

TModel-free portfolio theory: a rough path approach

DAVID PROEMEL
(Mannheim University)
Abstract

Classical approaches to optimal portfolio selection problems are based 
on probabilistic models for the asset returns or prices. However, by 
now it is well observed that the performance of optimal portfolios are 
highly sensitive to model misspecifications. To account for various 
type of model risk, robust and model-free approaches have gained more 
and more importance in portfolio theory. Based on a rough path 
foundation, we develop a model-free approach to stochastic portfolio 
theory and Cover's universal portfolio. The use of rough path theory 
allows treating significantly more general portfolios in a model-free 
setting, compared to previous model-free approaches. Without the 
assumption of any underlying probabilistic model, we present pathwise 
Master formulae analogously to the classical ones in stochastic 
portfolio theory, describing the growth of wealth processes generated 
by pathwise portfolios relative to the wealth process of the market 
portfolio, and we show that the appropriately scaled asymptotic growth 
rate of Cover's universal portfolio is equal to the one of the best 
retrospectively chosen portfolio. The talk is based on joint work with 
Andrew Allan, Christa Cuchiero and Chong Liu.

 

Mon, 08 Nov 2021

16:00 - 17:00
C1

TBA

George Robinson
(Oxford)
Abstract

The Jacquet-Langlands correspondence gives a relationship between automorphic representations on $GL_2$ and its twisted forms, which are the unit groups of quaternion algebras. Writing this out in more classical language gives a combinatorial way of producing the eigenvalues of Hecke operators acting on modular forms. In this talk, we will first go over notions of modular forms and quaternion algebras, and then dive into an explicit example by computing some eigenvalues of the lowest level quaternionic modular form of weight $2$ over $\mathbb{Q}$.

Mon, 08 Nov 2021
15:45
Virtual

The first group cohomology and uniformly bounded representations of simple rank-one Lie groups

Shintaro Nishikawa
(University of Münster)
Abstract

Consider simple rank-one Lie groups $SO(n, 1)$, $SU(n, 1)$ and $Sp(n ,1)$ ($n>1$). They are the isometry groups of real, complex and quaternionic hyperbolic spaces respectively.

By a result of Kostant, the trivial representation of $Sp(n ,1)$ is isolated in the space of irreducible unitary representations on Hilbert spaces. That is, $Sp(n ,1)$ has Kazhdan’s property (T) which is equivalent to the vanishing of 1st cohomology of the group in all unitary representations. This is in contrast to the case of $SO(n ,1)$ and $SU(n ,1)$ where they have the Haagerup approximation property, a strong negation of property (T).

This dichotomy between $SO(n ,1)$, $SU(n ,1)$ and $Sp(n ,1)$ disappears when we consider so-called uniformly bounded representations on Hilbert spaces. By a result of Cowling in 1980’s, the trivial representation of $Sp(n ,1)$ is no longer isolated in the space of uniformly bounded representations. Moreover, there is a uniformly bounded representation of $Sp(n ,1)$ with non-zero first cohomology group.

The goal of this talk is to describe these facts.

Mon, 08 Nov 2021
14:15
L4

Deformation uniqueness of Calabi-Yau metrics with maximal volume growth

Shih-Kai Chiu
((Oxford University))
Abstract

It is expected that complete noncompact Calabi-Yau manifolds are in some sense governed by their asymptotics at infinity. In the maximal volume growth case, the asymptotics at infinity are given by Calabi-Yau cones. We are interested in deformations of such metrics that fix the asymptotic cones at infinity. In the asymptotically conical case, Conlon-Hein proved uniqueness under such deformations. Their method is based on the corresponding linearized problem, namely the study of subquadratic harmonic functions. We generalize their work to the maximal volume growth case, allowing the tangent cones at infinity to have non-isolated singularities. Part of the talk is based on work in progress joint with Gabor Szekelyhidi.