11:00
11:00
Manifolds with odd Euler characteristic
Abstract
Orientable manifolds can only have an odd Euler characteristic in dimensions divisible by 4. I will prove the analogous result for spin and string manifolds, where the dimension can only be a multiple of 8 and 16 respectively. The talk will require very little background. I'll go over the definition of spin and string structures, discuss cohomology operations and Poincare duality.
16:00
Normal spanning trees in uncountable graphs
Abstract
"In a paper from 2001, Diestel and Leader characterised uncountable graphs with normal spanning trees through a class of forbidden minors. In this talk we investigate under which circumstances this class of forbidden minors can be made nice. In particular, we will see that there is a nice solution to this problem under Martin’s Axiom. Also, some connections to the Stone-Chech remainder of the integers, and almost disjoint families are uncovered.”
15:00
More Efficient Structure-Preserving Signatures: Or Bypassing the Lower Bounds
Abstract
Structure-preserving signatures are an important cryptographic primitive that is useful for the design of modular cryptographic protocols. In this work, we show how to bypass most of the existing lower bounds in the most efficient Type-III bilinear group setting. We formally define a new variant of structure-preserving signatures in the Type-III setting and present a number of fully secure schemes with signatures half the size of existing ones. We also give different constructions including constructions of optimal one-time signatures. In addition, we prove lower bounds and provide some impossibility results for the variant we define. Finally, we show some applications of the new constructions.
The wall-crossing formula and spaces of quadratic differentials
Abstract
The wall-crossing behaviour of Donaldson-Thomas invariants in CY3 categories is controlled by a beautiful formula involving the group of automorphisms of a symplectic algebraic torus. This formula invites one to solve a certain Riemann-Hilbert problem. I will start by explaining how to solve this problem in the simplest possible case (this is undergraduate stuff!). I will then talk about a more general class of examples of the wall-crossing formula involving moduli spaces of quadratic differentials.
14:30
Homogenized boundary conditions and resonance effects in Faraday cages
Abstract
The Faraday cage effect is the phenomenon whereby electrostatic and electromagnetic fields are shielded by a wire mesh "cage". Nick Trefethen, Jon Chapman and I recently carried out a mathematical analysis of the two-dimensional electrostatic problem with thin circular wires, demonstrating that the shielding effect is not as strong as one might infer from the physics literature. In this talk I will present new results generalising the previous analysis to the electromagnetic case, and to wires of arbitrary shape. The main analytical tool is the asymptotic method of multiple scales, which is used to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. In the electromagnetic case one observes interesting resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. This is joint work with Ian Hewitt.
14:30
Parking in Trees and Mappings - Enumerative Results and a Phase Change Behaviour
Abstract
Strongly dense subgroups of semisimple algebraic groups.
Abstract
A subgroup Gamma of a semisimple algebraic group G is called strongly dense if every subgroup of Gamma is either cyclic or Zariski-dense. I will describe a method for building strongly dense free subgroups inside a given Zariski-dense subgroup Gamma of G, thus providing a refinement of the Tits alternative. The method works for a large class of G's and Gamma's. I will also discuss connections with word maps and expander graphs. This is joint work with Bob Guralnick and Michael Larsen.
Boundary Conditions, Mirror Symmetry and Symplectic Duality
Abstract
In the last few years, it has become clear that there are striking connections between supersymmetry and geometric representation theory. In this talk, I will discuss boundary conditions in three dimensional gauge theories with N = 4 supersymmetry. I will then outline a physical understanding of a remarkable conjecture in representation theory known as `symplectic duality.
16:30
Macroscopic transport: ballistic, diffusive, super diffusive
Abstract
In acoustic materials (non null sound velocity), there is a clear separation of scale between the relaxation to mechanical equilibrium, governed by Euler equations, and the slower relaxation to thermal equilibrium, governed by heat equation if thermal conductivity is finite. In one dimension in acoustic systems, thermal conductivity is diverging and the thermal equilibrium is reached by a superdiffusion governed by a fractional heat equation. In non-acoustic materials it seems that there is not such separation of scales, and thermal and mechanical equilibriums are reached at the same time scale, governed by a Euler-Bernoulli beam equation. We prove such macroscopic behaviors in chains of oscillators with dynamics perturbed by a random local exchange of momentum, such that energy and momentum are conserved. (Works in collaborations with T. Komorowski).
15:45
Anosov representations and proper actions
Abstract
Superhedging Approach to Robust Finance and Local Times
Abstract
Using Vovk's game-theoretic approach to mathematical finance and probability, it is possible to obtain new results in both areas.We first prove that one can make an arbitrarily large profit by investing in those one-dimensional paths which do not possess a local time of finite p-variation. Additionally, we provide pathwise Tanaka formulas suitable for our local times and for absolutely continuous functions with sufficient regular derivatives. In the second part we derive a model-independent super-replication theorem in continuous time. Our result covers a broad range of exotic derivatives, including look-back options, discretely monitored Asian options, and options on realized variance.
This talk is based on joint works with M. Beiglböck, A.M.G. Cox, M. Huesmann and N. Perkowski.
Singular SPDEs on manifolds
Abstract
We show how the theories of paracontrolled distributions and regularity structures can be implemented on manifolds, to solve singular SPDEs like the parabolic Anderson model.
This is ongoing work with Bruce Driver (UCSD) and Antoine Dahlqvist (Cambridge)
3d N=2 dualities with monopoles
Abstract
I will present several new 3d N=2 dualities with super-potentials involving monopole operators. Some of the theories that I will discuss describe systems of D3 branes ending on pq-webs. In these cases 3d mirror symmetry is a consequence of S-duality.
Hurricanes and Climate Change
Abstract
In his talk, Kerry will explore the pressing practical problem of how hurricane activity will respond to global warming, and how hurricanes could in turn be influencing the atmosphere and ocean
Hurricanes and Climate Change - Oxford Climate Network Annual Lecture
Abstract
In his talk, Kerry will explore the pressing practical problem of how hurricane activity will respond to global warming, and how hurricanes could in turn be influencing the atmosphere and ocean.
Mathematical models of blood pressure regulation
MLMC for reflected diffusions
Abstract
This talk will discuss work-in-progress on the numerical approximation
of reflected diffusions arising from applications in engineering, finance
and network queueing models. Standard numerical treatments with
uniform timesteps lead to 1/2 order strong convergence, and hence
sub-optimal behaviour when using multilevel Monte Carlo (MLMC).
In simple applications, the MLMC variance can be improved by through
a reflection "trick". In more general multi-dimensional applications with
oblique reflections an alternative method uses adaptive timesteps, with
smaller timesteps when near the boundary. In both cases, numerical
results indicate that we obtain the optimal MLMC complexity.
This is based on joint research with Eike Muller, Rob Scheichl and Tony
Shardlow (Bath) and Kavita Ramanan (Brown).
The effect of domain shape on reaction-diffusion equations
Abstract
I will discuss some reaction-diffusion equations of bistable type motivated by biology and medicine. The aim is to understand the effect of the shape of the domain on propagation or on blocking of advancing waves. I will first describe the motivations of these questions and present a result about the existence of generalized “transition waves”. I will then discuss various geometric conditions that lead to either blocking, or partial propagation, or complete propagation. These questions involve new qualitative results for some non-linear elliptic and parabolic partial differential equations. I report here on joint work with Juliette Bouhours and Guillemette Chapuisat.