14:15
Rapid Supraglacial Lake Drainages on the Greenland Ice Sheet: Observations, Inverse Modeling, and Mechanisms for Triggering Drainage
Abstract
Across much of the ablation region of the western Greenland Ice Sheet, hydro-fracture events related to supraglacial lake drainages rapidly deliver large volumes of meltwater to the bed of the ice sheet. We investigate what triggers the rapid drainage of a large supraglacial lake using a Network Inversion Filter (NIF) to invert a dense local network of GPS observations over three summers (2011-2013). The NIF is used to determine the spatiotemporal variability in ice sheet behavior (1) prior to lake drainage, and in response to (2) vertical hydro-fracture crack propagation and closure, (3) the opening of a horizontal cavity at the ice-sheet bed that accommodates the rapid injection of melt-water, and (4) extra basal slip due to enhanced lubrication. We find that the opening and propagation of each summer’s lake-draining hydro-fracture is preceded by a local stress perturbation associated with ice sheet uplift and enhanced slip above pre-drainage background velocities. We hypothesize that these precursors are associated with the introduction of meltwater to the bed through neighboring moulin systems.
Visual recognition of facial expression
Abstract
The first half of the lecture will begin by reviewing what is known about the
neural representation of faces in the primate visual system. How does the
visual system represent the spatial structure of faces, facial identity and
expression? We then discuss how depression is associated with negative
cognitive biases in the recognition of facial expression, whereby depressed
people interpret facial expressions more negatively. The second half of the
lecture presents computer simulations aimed at understanding how these facial
representations may develop through visual experience. We show how neural
representations of expression are linked to particular spatial relationships
between facial features. Building on this, we show how the synaptic connections
in the model may be rewired by visual training to eliminate the negative
cognitive biases seen in depression.
PhD student talks
Abstract
Pengyu Wei's title: Ranking ForexMaster Players
Abstract:
In this talk I will introduce ForexMaster, a simulated foreign exchange trading platform, and how I rank players on this platform. Different methods are compared. In particular, I use random forest and a carefully chosen feature set, which includes not only traditional performance measures like Sharp ratio, but also estimates from the Plackett-Luce ranking model, which has not been used in the financial modelling yet. I show players selected by this method have satisfactory out-of-sample performance, and the Plackett-Luce model plays an important role.
Alissa Kleinnijenhuis title: Stress Testing the European Banking System: Exposure Risk & Overlapping Portfolio Risk
Abstract:
Current regulatory stress testing, as for example done by the EBA, BoE and the FED, is microprudential, non-systemic. These stress tests do not take into account systemic risk, even though the official aim of the stress test is the "test the resilience of the financial system as a whole, and the individual banks therein, to another crisis".
Two papers are being developed that look at the interconnections between banks. One paper investigates the systemic risk in the European banking system due to interbank exposures, using EBA data. The other paper, looks at the trade-off between individual and systemic risk with overlapping portfolios. The above two "channels of contagion" for systemic risk can be incorporated in stress tests to include systemic components to the traditional non-systemic stress tests.
(1) Fluid and particle dynamics in blenders and food processors; (2) Filter surface optimisation for maximising peak air power of vacuum cleaners; (3) Fluid system models for drip coffee makers
Abstract
Blenders and food processors have been around for years. However, detailed understanding of the fluid and particle dynamics going on with in the multi-phase flow of the processing chamber as well as the influence of variables such as the vessel geometry, blade geometry, speeds, surface properties etc., are not well understood. SharkNinja would like Oxford Universities help in developing a model that can be used to gain insight into fluid dynamics within the food processing chamber with the goal being to develop a system that will produce better food processing performance as well as predict loading on food processing elements to enable data driven product design.
Many vacuum cleaners sold claim “no loss of suction” which is defined as having only a very small reduction in peak air power output over the life of the unit under normal operating conditions. This is commonly achieved by having a high efficiency cyclonic separator combined with a filter which the user washes at regular intervals (typically every 3 months). It has been observed that some vacuum cleaners show an increase in peak air watts output after a small amount of dust is deposited on the filter. This effect is beneficial since it prolongs the time between filter washing. SharkNinja are currently working on validating their theory as to why this occurs. SharkNinja would like Oxford University’s help in developing a model that can be used to better understand this effect and provide insight towards optimizing future designs.
Although a very simple system from a construction standpoint, creating a drip coffee maker that can be produce a range of coffee sizes from a single cup to a multi-cup carafe presents unique problems. Challenges within this system result from varying pressure heads on the inlet side, accurate measurement of relatively low flow rates, fluid motive force generated by boilers, and head above the boiler on the outlet side. Getting all of these parameters right to deliver the proper strength, proper temp, and proper volume of coffee requires in depth understanding of the fluid dynamics involved in the system. An ideal outcome from this work would be an adaptive model that enables a fluid system model to be created from building blocks. This system model would include component models for tubing, boilers, flow meters, filters, pumps, check valves, and the like.
17:30
Decidability of the Zero Problem for Exponential Polynomials
Abstract
We consider the decision problem of determining whether an exponential
polynomial has a real zero. This is motivated by reachability questions
for continuous-time linear dynamical systems, where exponential
polynomials naturally arise as solutions of linear differential equations.
The decidability of the Zero Problem is open in general and our results
concern restricted versions. We show decidability of a bounded
variant---asking for a zero in a given bounded interval---subject to
Schanuel's conjecture. In the unbounded case, we obtain partial
decidability results, using Baker's Theorem on linear forms in logarithms
as a key tool. We show also that decidability of the Zero Problem in full
generality would entail powerful new effectiveness results concerning
Diophantine approximation of algebraic numbers.
This is joint work with Ventsislav Chonev and Joel Ouaknine.
Deformation K-theory
Abstract
Deformation K-theory was introduced by G. Carlsson and gives an interesting invariant of a group G encoding higher homotopy information about its representation spaces. Lawson proved a relation between this object and a homotopy theoretic analogue of the representation ring. This talk will not contain many details, instead I will outline some basic constructions and hopefully communicate the main ideas.
On multi-dimensional risk sharing problems
Abstract
A well-known result of Landsberger and Meilijson says that efficient risk-sharing rules for univariate risks are characterized by a so-called comonotonicity condition. In this talk, I'll first discuss a multivariate extension of this result (joint work with R.-A. Dana and A. Galichon). Then I will discuss the restrictions (in the form of systems of nonlinear PDEs) efficient risk sharing imposes on individual consumption as a function of aggregate consumption. I'll finally give an identification result on how to recover preferences from the knowledge of the risk sharing (joint work with M. Aloqeili and I. Ekeland).
Around the Möbius function
Abstract
The Möbius function plays a central role in number theory; both the prime number theorem and the Riemann Hypothesis are naturally formulated in terms of the amount of cancellations one gets when summing the Möbius function. In a recent joint work with Maksym Radziwill we have shown that the sum of the Möbius function exhibits cancellation in "almost all intervals" of arbitrarily slowly increasing length. This goes beyond what was previously known conditionally on the Riemann Hypothesis. Our result holds in fact in much greater generality, and has several further applications, some of which I will discuss in the talk. For instance the general result implies that between a fixed number of consecutive squares there is always an integer composed of only "small" prime factors. This settles a conjecture on "smooth" or "friable" numbers and is related to the running time of Lenstra's factoring algorithm.
Acoustic liners in aircraft engines
Abstract
Noise limits are one of the major constraints when designing
aircraft engines. Acoustic liners are fitted in almost all civilian
turbofan engine intakes, and are being considered for use elsewhere in a
bid to further reduce noise. Despite this, models for acoustic liners
in flow have been rather poor until recently, with discrepancies of 10dB
or more. This talk will show why, and what is being done to model them
better. In the process, as well as mathematical modelling using
asymptotics, we will show that state of the art Computational
AeroAcoustics simulations leave a lot to be desired, particularly when
using optimized finite difference stencils.
Multigrid Methods for Nonlinear PDE Systems with Applications in Phase-Field Models
Ancient Solutions to Navier-Stokes Equations in Half Space
Abstract
The relationship between the so-called ancient (backwards) solutions to the Navier-Stokes equations in the space or in a half space and the global well-posedness of initial boundary value problems for these equations will be explained. If time permits I will sketch details of an equivalence theorem and a proof of smoothness properties of mild bounded ancient solutions in the half space, which is a joint work with Gregory Seregin
11:00
16:00
Isometries of CAT(0) Spaces
Abstract
This talk will be an easy introduction to some CAT(0) geometry. Among other things, we'll see why centralizers in groups acting geometrically on CAT(0) spaces split (at least virtually). Time permitting, we'll see why having a geometric action on a CAT(0) space is not a quasi-isometry invariant.
15:00
On the concrete hardness of Learning with Errors
Abstract
The Learning with Errors (LWE) problem has become a central building block of modern cryptographic constructions. We will discuss hardness results for concrete instances of LWE. In particular, we discuss algorithms proposed in the literature and give the expected resources required to run them. We consider both generic instances of LWE as well as small secret variants. Since for several methods of solving LWE we require a lattice reduction step, we also review lattice reduction algorithms and propose a refined model for estimating their running times. We also give concrete estimates for various families of LWE instances, provide a Sage module for computing these estimates and highlight gaps in the knowledge about algorithms for solving the Learning with Errors problem.
Equivalence relations for quadratic forms
Abstract
We investigate equivalence relations for quadratic forms that can be expressed in terms of algebro-geometric properties of their associated quadrics, more precisely, birational, stably birational and motivic equivalence, and isomorphism of quadrics. We provide some examples and counterexamples and highlight some important open problems.
Poles of maximal order of Igusa zeta functions
Abstract
Igusa's p-adic zeta function $Z(s)$ attached to a polynomial $f$ in $N$ variables is a meromorphic function on the complex plane that encodes the numbers of solutions of the equation $f=0$ modulo powers of a prime $p$. It is expressed as a $p$-adic integral, and Igusa proved that it is rational in $p^{-s}$ using resolution of singularities and the change of variables formula. From this computation it is immediately clear that the order of a pole of $Z(s)$ is at most $N$, the number of variables in $f$. In 1999, Wim Veys conjectured that the only possible pole of order $N$ of the so-called topological zeta function of $f$ is minus the log canonical threshold of $f$. I will explain a proof of this conjecture, which also applies to the $p$-adic and motivic zeta functions. The proof is inspired by non-archimedean geometry and Mirror Symmetry, but the main technique that is used is the Minimal Model program in birational geometry. This talk is based on joint work with Chenyang Xu.
Block Preconditioning for Incompressible Two-Phase Flow
Abstract
Modelling two-phase, incompressible flow with level set or volume-of-fluid formulations results in a variable coefficient Navier-Stokes system that is challenging to solve computationally. In this talk I will present work from a recent InFoMM CDT mini-project which looked to adapt current preconditioners for one-phase Navier-Stokes flows. In particular we consider systems arising from the application of finite element methodology and preconditioners which are based on approximate block factorisations. A crucial ingredient is a good approximation of the Schur complement arising in the factorisation which can be computed efficiently.
14:30
Transference for the Erdős–Ko–Rado theorem
Abstract
The Erdős–Ko–Rado theorem is a central result in extremal set theory which tells us how large uniform intersecting families can be. In this talk, I shall discuss some recent results concerning the 'stability' of this result. One possible formulation of the Erdős–Ko–Rado theorem is the following: if $n \ge 2r$, then the size of the largest independent set of the Kneser graph $K(n,r)$ is $\binom{n-1}{r-1}$, where $K(n,r)$ is the graph on the family of $r$-element subsets of $\{1,\dots,n\}$ in which two sets are adjacent if and only if they are disjoint. The following will be the question of interest. Delete the edges of the Kneser graph with some probability, independently of each other: is the independence number of this random graph equal to the independence number of the Kneser graph itself? I shall discuss an affirmative answer to this question in a few different regimes. Joint work with Bollobás and Raigorodskii, and Balogh and Bollobás.
Open invariants and crepant transformations
Abstract
The question that the Crepant Resolution Conjecture (CRC) wants to address is: given an orbifold X that admits a repant resolution Y, can we systematically compare the Gromov-Witten theories of the two spaces? That this should happen was first observed by physicists and the question was imported into mathematics by Y.Ruan, who posited it as the search for an isomorphism in the quantum cohomologies of the two spaces. In the last fifteen years this question has evolved and found different formulations which various degree of generality and validity. Perhaps the most powerful approach to the CRC is through Givental's formalism. In this case, Coates, Corti, Iritani and Tseng propose that the CRC should consist of the natural comparison of geometric objects constructed from the GW potential fo the space. We explore this approach in the setting of open GW invariants. We formulate an open version of the CRC using this formalism, and make some verifications. Our approach is well tuned with Iritani's approach to the CRC via integral structures, and it seems to suggest that open invariants should play a prominent role in mirror symmetry.
Collocation-based hybrid numerical-asymptotic methods for high frequency wave scattering
Abstract
Wave scattering problems arise in numerous applications in acoustics, electromagnetics and linear elasticity. In the boundary element method (BEM) one reformulates the scattering problem as an integral equation on the scatterer boundary, e.g. using Green’s identities, and then seeks an approximate solution of the boundary integral equation (BIE) from some finite-dimensional approximation space. The conventional choice is a space of piecewise polynomials; however, in the “high frequency” regime when the wavelength is small compared to the size of the scatterer, it is computationally expensive to resolve the highly oscillatory wave solution in this way. The hybrid numerical-asymptotic (HNA) approach aims to reduce the computational cost by enriching the BEM approximation space with oscillatory functions, carefully chosen to capture the high frequency asymptotic solution behaviour. To date, the HNA methodology has been implemented almost exclusively in a Galerkin variational framework. This has many attractive features, not least the possibility of proving rigorous convergence results, but has the disadvantage of requiring numerical evaluation of high dimensional oscillatory integrals. In this talk I will present the results of some investigations carried out with my MSc student Emile Parolin into collocation-based implementations, which involve lower-dimensional integrals, but appear harder to analyse in terms of convergence and stability.
17:00
Non-Archimedean Analytic Geometry..etc.
Abstract
I want to give an introduction into non-Archimedean Geometry, and show how Model Theory was used to prove the recent results of Hrushovski-Loeser on topological properties of analytic spaces. This may also be of interest with view towards Zilber's programme for syntax-semantics dualities.
The Arithmetic of K3 Surfaces
Abstract
The study of rational points on K3 surfaces has recently seen a lot of activity. We discuss how to compute the Picard rank of a K3 surface over a number field, and the implications for the Brauer-Manin obstruction.